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Executive Summary

This deliverable provides an integrated view of the contributions and findings that were produced
while working on the Work Package 1 (WP1) use cases. WP1 is devoted to four use cases con-
sidered by the ESCUDO-CLOUD project. Use cases were designed along requirements that have
been introduced in D1.1 and reshaped in D1.2.

The final outcome is a collection of modular, compatible, and inter-operable, tools represent-
ing the ESCUDO-CLOUD framework. The tools address four security dimensions. Security
properties, represented by Confidentiality, Integrity and Availability. These encompass protect-
ing outsourced data, validating authenticity and integrity, and evaluating whether Cloud providers
meet Service Level Agreements. Access requirements, represented by protection of actual data,
computations over data and their results, and access patterns of data in the Cloud. Sharing re-
quirements, addressing the need for differentiating access control between data owners and other
users in the Cloud. Cloud architectures, focusing on the assessment and enforcement of security
standards among multiple Cloud providers.

In brief, the four use cases developed tools addressing the security dimensions and technical
challenges through the following scenarios and goals.

Use Case 1: OpenStack Framework. Use Case 1 describes the data-at-rest-protection and key-
management solution for OpenStack Swift developed in the context of ESCUDO-CLOUD.
Swift is the object-store component of the open-source cloud-service framework OpenStack.
We developed a flexible, hierarchical key management in which each object stored in Swift
is protected with an individual key, and these object keys are wrapped by keys that are on
higher levels in the hierarchy. Besides the fact that this structure aligns well with Swift’s
hierarchy of accounts, containers, and objects, one main advantage of this approach is its
flexibility. In particular, it allows for updating the keys in some branch of the hierarchy,
while leaving the remaining part untouched. This efficient key-update operation is instru-
mental in implementing secure deletion in our data-at-rest protection in Swift.

Use Case 2: Secure Enterprise Data Management in the Cloud. Use Case 2 considers the use
case of outsourcing supply chain interactions in the aerospace engine maintenance industry.
The technological challenge of this use case is to develop new supply chain cooperation
systems, based on encrypted database technology in the Cloud. This technology is based
on the search and aggregation of encrypted data. Supply chain collaboration is the align-
ment of individual plans and strategies of the involved parties. The stronger coordination
and the overcoming of information asymmetries among involved parties shall conduce to
improvements of the supply chain performance.

Use Case 3: Federated Secure Cloud Storage. Use Case 3 has the objective to ensure the con-
fidentiality and integrity of the customer’s data when it is outsourced for storage to different
Cloud storage services. The primary challenge addressed by Use Case 3 is to offer the key
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10 List of Figures

management and policy-based access control capabilities to customers through a Cloud ser-
vice store. Each customer should be able to apply key release rules and conditions, taking
into account user access rights. These objectives are achieved by building a prototype solu-
tion called Data Protection as a Service (DPaaS). In the context of Use Case 3, three types of
storage services are addressed: block storage, object storage, and Big Data (HDSF) storage
services. The DPaaS solution also addresses aspects of controlling access to the outsourced
data through policy-based security rules that enforce the release of encryption keys.

Use Case 4: Elastic Cloud Service Provider. Use Case 4 considers the implementation of an
elastic Cloud provider, targeting a data storage service. The resulting reference architec-
ture and prototype is of particular relevance to Cloud service brokers and private Cloud
providers that offer secure, accessible, and scalable storage in the Cloud. The architecture
is also applicable to organizations hosting local datacenters that intend to employ Cloud
bursting to exploit relatively cheap storage resources of the Cloud. These objectives present
a data protection challenge whereby end users must entrust third parties (i.e., the Cloud
provider) with the protection of their data. To mitigate such risks, UC4 uses client-side en-
cryption techniques, and secure authentication and key management processes enabling the
data owner to remain in complete control of the security protecting their data.

The use case implementations were fed from selected results of WP2, WP3, and WP4 that
performed in-depth research on basic protection, sharing and multi-clouds to guarantee security
properties and access and sharing requirements considering different cloud architectures. Further-
more, use case implementations were driven by the industrial partners. Use Case 1 by IBM, Use
Case 2 by SAP, Use Case 3 by BT, and Use Case 4 by EMC and WT.

The remainder of this document is organized as follows: Chapter 1 introduces the solution
for Use Case 1. Chapter 2 describes the solution for Use Case 2. The solution for Use Case 3 is
presented in Chapter 3. The Use Case 4 tools are stated in Chapter 4. Lastly, Chapter 5 formulates
an overall conclusion.

ESCUDO-CLOUD Deliverable D1.5



1. Use Case 1: OpenStack Framework

1.1 Background

1.1.1 Overview

Cloud services have turned remote computation and storage into a commodity and conveniently
allow clients to seamlessly scale resources on demand. However, the fact that client data is trans-
ferred to, and stored by, the Cloud service provider introduces new security risks.

One important aspect of data security in the context of Cloud storage is data-at-rest protection,
meaning that the data is encrypted before being written to persistent storage media. This aspect
is complementary to data-in-transit protection, where the data is encrypted while it travels over a
network. In data-at-rest protection, the customer’s plaintext data is encrypted in the data center
of the Cloud service provider, who therefore in principle has access to the plaintext data. The
access to the plaintext data is, however, restricted to those systems in the data center that handle
the encryption, while the actual storage systems only deal with encrypted data. Encryption of data
at rest and secure data deletion are important requirements especially for enterprise-level Cloud
storage services. Encryption of data at rest is required to handle the case of stolen or improperly-
decommissioned storage media (e.g., disks, tapes) by minimizing the exposure of plaintext data.
Secure data deletion is required to delete large quantities of customer data and must be time-
efficient. Overwriting-based deletion techniques are ineffective on certain media and vastly inef-
ficient in general, and the physical destruction of storage media permits for very little flexibility
when it comes to the selection of which files, objects or volumes are required to be deleted. By
contrast, cryptography-based secure deletion offers a flexible and efficient alternative: if data is
encrypted and the encryption keys are properly managed and carefully destroyed, large subsets of
data are instantaneously no longer accessible.

OpenStack is the leading open-source cloud-service framework, and is widely used in industry.
In fact, a wide subset of IBM’s storage and Cloud storage offerings make use of the OpenStack
framework, and extend it to offer enterprise-grade services to its customers. Swift is the object-
store component of OpenStack. The deployed version of Swift provides data-at-rest protection by
encrypting the objects before writing them to disk. The object encryption is performed using keys
derived from a single master key that is set up in the Swift configuration. This scheme is simple,
but has severe restrictions in terms of its flexibility. For instance, rotating any key in the entire
Cloud storage, such as when a client terminates the service agreement and wants all her data to be
destroyed, would require to re-encrypt all encrypted objects, which is not feasible in large-scale
deployments.

This document describes the extension of OpenStack Swift with a flexible key-management
technique that implements enterprise-level features such as the rotation of individual keys and uses
this to provide selective secure deletion.

11



12 Use Case 1: OpenStack Framework

1.1.2 Context in ESCUDO-CLOUD

The main focus of this document is within Work Package 1 of ESCUDO-CLOUD, and describes
the solution developed in the context of Use Case 1. The techniques are based on results from
Work Package 2, which focuses on protection techniques for outsourced data. This encompasses
the encryption of data at rest in Task 2.1, with the goal to guarantee to the data owner that the
confidentiality and integrity of her data are adequately protected, especially when the outsourced
data collection includes sensitive information. The main contributions used in the solution de-
scribed in this document relate to Task 2.2, which develops flexible key-management techniques
targeted toward their use in data-at-rest protection. The solution presented in this document imple-
ments enterprise-level security guarantees for data outsourcing, which is an explicitly stated goal
of ESCUDO-CLOUD. The solution is implemented within OpenStack Swift.

1.1.3 Background on OpenStack Swift

OpenStack Swift, also referred to as OpenStack Object Storage, is an open-source object storage
system and part of the OpenStack Cloud platform (http://swift.openstack.org). OpenStack
Swift is best suited to backup and archive unstructured data, such as documents, images, audio and
video files, email and virtual machine images. Clients access the system through a REST HTTP
API.

OpenStack Swift is highly scalable, runs on standard hardware, and implements data resilience
and redundancy in software. Objects and files are written to multiple disk drives spread throughout
servers in the data center, with Swift responsible for ensuring data replication and integrity across
the cluster. By default, Swift places three copies of every object in separate locations that are as
different as possible—in terms of region, zone, server, and drive. If a server or hard drive fails,
Swift replicates its content from active nodes to new locations in the cluster.

Storage clusters scale horizontally simply by adding new servers. Should a server or hard
drive fail, OpenStack replicates its content from other active nodes to new locations in the cluster.
Because OpenStack uses software logic to ensure data replication and distribution across different
devices, inexpensive commodity hard drives and servers can be used.

Many descriptions of the architecture of Swift are available, for example, on the OpenStack
website at http://docs.openstack.org/developer/swift/overview_architecture.html.

Data-at-rest encryption

The need to support encryption for data-at-rest protection in Swift has been recognized for a long
time by now. During 2014 an initial “blueprint” and a corresponding prototype was released by
IBM Research – Zurich (https://blueprints.launchpad.net/swift/+spec/swift-enc-proxy).
This triggered a design process in close connection with the core development team of Swift. Start-
ing from the initial design specification, a team at HP, IBM (mainly IBM Corp. and with inputs
from IBM Research – Zurich), and SwiftStack, has implemented the basic encryption functional-
ity.

For an overview and introduction to the architecture of the data-at-rest encryption feature, see
the online documentation at https://docs.openstack.org/developer/swift/overview_
encryption.html.

ESCUDO-CLOUD Deliverable D1.5



Section 1.2: Solution 13

Key management

The keymaster component in the first release of the data encryption feature has limited functional-
ity in the sense that it supports only one shared key for the whole Swift cluster, and this key must
be stored on every proxy server in the configuration data.

In this document, the design and an implementation for a more flexible key management mod-
ule are described. The high-level goals stated before make the encryption feature more flexible:
for example, towards supporting common security policies that require periodic key rotation, and
for providing a secure deletion feature, whereby data can be provably forgotten (assuming that a
master key can be rotated and securely deleted).

The design is based on a “SmartKeyMaster” and on a prototype of a file system supporting
policy-based secure deletion, as described by Cachin et al. [CHHS13].

1.1.4 Availability

All code contributed to OpenStack in the context of use case 1 is available as open source at
https://github.com/ibm-research/swift-keyrotate.

1.1.5 License

The code is provided under the following license.

Copyright (c) 2017 IBM Corp.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the License
at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

1.2 Solution

OpenStack Swift consists of client-facing (stateless) proxy nodes to which clients connect and that
handle a large part of its functionality. The proxy nodes access object, container, and account
servers, which are responsible for persistently storing object, container, and account-related data.
The object, container, and account servers exist in multiple redundant instances. Data replication,
for tolerating failures of one or more of the storage servers, is handled by the proxy nodes.

The main contribution described in this document is part of a keymaster WSGI middleware,
which is one of many middleware components of the Swift proxy server pipeline. The keymaster
middleware performs key-management tasks and provides encryption keys for other middleware,
in particular for the encryption middleware. The encryption middleware encrypts and decrypts
user and system metadata, as well as the actual user data that is stored in the Swift object storage
system.
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Figure 1.1: Key hierarchy entity

1.2.1 Functionality and goals

Structure. Swift organizes and manages data in terms of accounts, containers and objects. The
keymaster abstracts Swift accounts, containers, and objects as entity objects. Swift objects belong
to containers, and containers belong to accounts. Swift users authenticate to the system using a
separate service such as OpenStack Keystone, and Swift requests are identified as belonging to a
certain account, and possibly also to a container and an object. Which keys need to be retrieved,
created and/or provisioned by the keymaster depends on the type of entity that the request operates
on.

Our keymaster operates on Entities, which contain key-encryption keys (KEKs), data encryp-
tion keys (DEKs), and the ID of the parent Entity whose KEK is used to wrap the current Entity’s
KEK, as shown in Figure 1.1. The KEKs are only used internally in the keymaster to wrap other
KEKs, as well as DEKs. The DEKs are provided to other middleware, in particular to the de-
crypter and encrypter middlewares, which in turn use the DEKs to decrypt and encrypt user and
system metadata, as well as user data.

Figure 1.2 illustrates the different entities and the provisioning of keys. The figure shows the
top-level Master key stored in Barbican, and the Master key is used to wrap the Account KEK.
The Account KEK is used to wrap both the corresponding Account DEK, as well as the Container
KEK. In the same way, the Container KEK is used to wrap the Container DEK and the Object
KEK, and finally the Object KEK is used to wrap the Object DEK.

The master key(s) are generated by, and stored in, Barbican. The requests for generating the
keys and storing them in Barbican are sent by the user directly to Barbican. The Swift keymaster
retrieves the user’s keys from Barbican using the user’s authentication token, which is passed in
with regular Swift requests. The fact that the user’s authentication token is required for accessing
the keys from Barbican means that any key management operation that requires access to the
master keys from Barbican, can only be performed as part of a user request, and, e.g., not as
regularly scheduled background tasks.

Key rotation and secure deletion. According to commonly accepted security practice, encryp-
tion keys must be periodically rotated, for various reasons that are best described in the relevant
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Figure 1.2: Key architecture, distribution and usage by different components

guidelines of NIST [Bar16, BBB+05, BD15]. Industry has supported this requirement through
systems for key-lifecycle management [BCH+10].

As a first step, one could consider a scheme where only the key at the top level (the account
key) can be rotated. Yet, this provides only partial protection because an adversary could have
locally stored some key that lies below the account key in the hierarchy. This would allow the
adversary access to all underlying data. Instead, in the design described here, key rotation is per-
formed on all levels; this is necessary, among other reasons, for supporting secure cryptographic
deletion.

For cryptographically deleting an object o, all the parent KEKs of the object to be deleted are
rotated (e.g., its container key, the account key, and the master key), and then all the KEKs whose
parent KEK changed are re-wrapped. Once the old master key is securely deleted, the object o
will be cryptographically deleted, i.e., the encrypted data might still be accessible, but the DEK
required to decrypt the data might no longer be available. Obviously the adversary could have
simply stored a copy of the plaintext data to be securely deleted; this is an attack that cannot be
prevented, therefore it is not considered in this design.

Figures 1.3 and 1.4 show the key rotation process when securely deleting an object and a
container, respectively. The initial state is shown as yellow keys - in both figures, there are two
containers, C1 and C2, each containing two objects, O11 and O12 in container C1, and O21 and O22

in container C2. The new, re-keyed, keys are shown in red, and old keys that are deleted as part of
the key rotation process are shown with red X symbols.

In Figure 1.3, the user wants to delete object O22, corresponding to KEK O22K1. The Swift
delete operation may already have been executed, in which case the object data is no longer ac-
cessible through the regular Swift APIs, but low-level access to the physical storage medium may
still reveal the encrypted data of the deleted object. As long as the keys needed to decrypt the
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Figure 1.3: Key rotation and secure deletion of object

object exist, from the Swift encryption body key, to the DEKs and KEKs of the key hierarchy all
the way up to the master KEK, it may be possible for an attacker to recover the data. To securely
delete the data, one or more keys in the key hierarchy shall be securely deleted. To this end, key
rotation is performed, where the keys for the entities that are to be kept are rotated, while the keys
for the entities that are to be securely deleted are not rotated. When securely deleting object O22

in Figure 1.3, the KEKs of the parent container C1 and the account, as well as the master key, are
re-keyed. Subsequently, the KEKs of all entities whose parent KEKs have changed, are rewrapped
with the new parent key. In this case, the KEK of object O21 is rewrapped with the new container
key C2K2, and the KEK of container C1 is rewrapped with the new account key AK2. Once the old
keys are purged from the system, object O22 is effectively cryptographically deleted. The other
object in container C2 can still be accessed using its old KEK O21K1, and the other container C1

can still be accessed using its old KEK C1K1.
Figure 1.4 shows a similar scenario, but here the user wants to securely delete an entire con-

tainer C2, instead of just a single object within the container. In this case, the KEKs of all parent
entities of the container C2 (i.e., AK1 and MK1) are re-keyed and the KEKs of all entities whose
parent KEK has changed (i.e., container C1) are re-wrapped. Once the old keys are deleted, up to
and including the old master key MK1, the container C2 and all objects stored in it are securely
deleted.

Performance-wise the key rotation process can be quite expensive, and when deleting multiple
objects it may be desirable to postpone the key rotation until all objects in the current deletion
batch have been removed. Another argument for delaying the key rotation process is to implement
a “grace period”, where a user has a possibility to undo the delete operations within a certain period
of time, e.g., a day, before the operation is committed by performing key rotation. To support the
above scenarios, it is possible to decouple the deletion operation from the key rotation process,
and perform them separately. Objects and containers can then be deleted using the regular delete
operations, which do not involve any key rotation. Once the operations are to be committed, the
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Figure 1.4: Key rotation and secure deletion of container

user performs a key rotation on the parent entities of all entities that have been deleted, i.e., for
deleted objects the parent containers are re-keyed, and for deleted containers, the parent account
is re-keyed.

1.2.2 Architecture and components

The high-level structure of the implementation can best be described via Figure 1.5. To start with,
the client first needs to create a master secret in Barbican. For regular operations (e.g., GET, PUT),
the client sends a REST request for reading or writing an object to the proxy server. The proxy
server retrieves the master secret from the Barbican key server. It then obtains the account data
from the account server, the metadata that is associated with the account contains the account keys,
which are wrapped with the master key. The corresponding steps are also performed to obtain the
container and object metadata from the container server and the object server, respectively. The
object metadata then contain the object data encryption key which is used to wrap the object body
key, which is finally used to decrypt (or encrypt) the actual object data.

Internally, the Swift proxy server is structured as a pipeline of modules that process the request.
Each request first passes the pipeline in one direction, where the final module performs the actual
write to, or read from, the servers that actually store the data, and passes the result back through
the pipeline. The data-at-rest protection is implemented in two modules which are inserted into
the pipeline as

keymaster encryption

which ensures that the proper cryptographic keys are prepared by the keymaster before the
encryption module processes a write- or read-request. The enhanced key-management tech-
niques developed for this use case are implemented as an alternative keymaster component, and
as a slightly modified encryption component. The high-level design is depicted in Figure 1.6.
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Figure 1.6: The rotating_keymaster and rotating_encryption components in Swift.

The new keymaster component, called rotating_keymaster, accesses the master secret stored in
Barbican and performs all computations on the key hierarchy. To do so, it retrieves the metadata
for the respective account, container, and object in sub-queries to the respective Swift services,
and unwraps the respective keys stored in the metadata. Finally, it provides access to the object-
encryption key to the rotating_encryption component via a callback interface.

A client can request services of the key-management component using specific header fields
in the REST query, and in particular, POST operations. The Rekey header instructs the keymaster
to re-key the entity that is the target of the POST operation, whereas a Rewrap header instructs
the keymaster to re-wrap the entity that is the target of the POST operation. Re-keying involves
generating a new KEK for the entity, and wrapping it with a specific KEK of the entity’s parent
by explicitly specifying it as the value to the Rekey header, or simply using the latest KEK of the
entity’s parent. Re-wrapping is the same as re-keying, except that no new KEK is generated—
the existing KEK is merely re-wrapped with the KEK of a specific parent entity, or if no parent
entity is specified, the KEK of the latest parent entity. Re-keying can be performed on accounts
and containers, and re-wrapping can be performed on containers or objects. Re-keying and re-
wrapping results in the keys associated with the corresponding entity to be changed. The concept
of key rotation involves one or more re-keying and re-wrapping operations. When rotating an
account key, all containers keys that are wrapped by the account key are re-wrapped with the new
account key, and when rotating a container key, all object keys that are wrapped by this key are
re-wrapped.
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The standard Swift client has been extended to support re-keying and secure deletion. Re-
keying simply sets the corresponding flag in the REST header. Secure deletion of an entity deletes
the respective entity, and then re-keys the entity on the next-higher level. This guarantees that even
if a copy of the original object were still to be found, it would be impossible to decrypt because
even knowledge of the current master key does not allow to unwrap the key that protects the object.

1.2.3 Getting started

This section describes two ways of configuring an OpenStack Swift setup with the hierarchical
key management keymaster and encryption features. The first paragraph below assumes that the
OpenStack Swift, Keystone and Barbican services are already installed, and describes how to con-
figure Swift to use the new keymaster. The second paragraph describes how an entire development
environment can be set up from scratch using Vagrant and VirtualBox virtual machines (VMs).

Installation requirements and procedure

The first step is to set up an OpenStack environment including the Barbican service. We refer to
a standard OpenStack manual for this process. Swift also needs to be configured to use Keystone
for authentication, and not e.g., tempauth. This is because the user’s authentication token is used
by Swift to retrieve the user’s root encryption secrets from Barbican, so the two services shall use
the same authentication and authorization service.

Next, the hierarchical keymaster needs to be installed on the Swift proxy node(s). This is done
by first cloning the swift-keyrotate repository:

$ git clone https://github.com/ibm-research/swift-keyrotate.git

Thereafter, the requirements and the hierarchical keymaster middleware itself are installed:

$ cd swift-keyrotate/swift
$ sudo pip install -r requirements.txt
$ sudo python setup.py develop
$ cd -

The data-at-rest encryption and the advanced key management are configured by adding

rotating_keymaster rotating_encryption

into the pipeline of the proxy server. The rotating_keymaster and rotating_encryption
filters are configured by adding sections

[filter:rotating_keymaster]
use = egg:swiftkeyrotate#rotating_keymaster
keymaster_config_path = /etc/swift/rotating_keymaster.conf

[filter:rotating_encryption]
use = egg:swiftkeyrotate#rotating_encryption

to the configuration of the proxy server, and the file /etc/swift/rotating_keymaster.conf
which contains the following configuration directives:
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[rotating_keymaster]
auth_endpoint = http://<keystone-IP>/identity/v3
api_class = swiftkeyrotate.keyrotate_key_manager.KeyrotateKeyManager

where the keystone-IP placeholder is replaced by the proper value according to the installation.
To facilitate the user of the new hierarchical key management features, also set up the modified

python Swift client located in the same git repository as the Swift module:

$ cd swift-keyrotate/python-swiftclient
$ sudo pip install -r requirements.txt
$ sudo python setup.py develop
$ cd -

The new commands are swift rekey and swift secdel. See the paragraph on the demonstration
workflow below for more details on the usage of the new commands.

Installation of a test environment using Vagrant

An easy set-up for testing purposes can be achieved using the pre-configured Vagrant environment
included in the repository. This setup requires VirtualBox (available at http://www.virtualbox.
org) and Vagrant (available at http://www.vagrantup.com) to be installed on the host system.
To set up the test environment with the modified Swift instance, the following procedure is used:
First clone the swift-keyrotate repository via

$ git clone https://github.com/ibm-research/swift-keyrotate.git

on the local hard drive. This repository contains all data to set up a local installation of Swift.
Second, provision the virtual machines. This will install one swift-services VM that runs

the base services (Keystone and Barbican), and one swift VM that runs the Swift server.

$ vagrant up

The process will take several minutes, since virtual-machine images will be downloaded and pro-
visioned with the OpenStack software.

Finally, log in to the Swift VM and load the credentials of the Swift user that is pre-installed
by the scripts.

$ vagrant ssh swift
$ source ~/openrc.swiftuser

Now the swift-keyrotate functionality is available, as described in the subsequent paragraphs.

Completing the setup

As described in the previous paragraphs, the master secret is stored in the Barbican key server.
Using the OpenStack command-line tools, we can list the root secrets in Barbican:

$ openstack secret list

If no secrets exist in Barbican, use the rekey command in the swift command-line client to create
one, along with an account key of the present user.

$ swift rekey
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Using the new features

The modified Swift client introduces two new commands to the swift command line client, for
re-keying containers and for securely deleting containers and objects.

1. For rekeying a container, specify the rekey sub-command along with the identifier of the
container (here: cont1).

$ swift rekey cont1

2. Secure deletion is implemented via the secdel sub-command. To securely delete object
obj1 from container cont1, issue the following commands.

$ swift secdel cont1 obj1

Containers can be securely deleted analogously, by only specifying the identifier of the
container that shall be deleted.

A demonstration workflow

The following workflow shows the use and the effects of the rekeying and secure deletion func-
tionalities.

Preparation. The first step is to create objects in the Swift object store that can later be used to
demonstrate the actual functionality.

1. Create some temporary files to upload.

$ echo obj11 > obj11
$ echo obj12 > obj12
$ echo obj13 > obj13
$ echo obj21 > obj21

2. Upload files; three in container cont1, one in container cont2.

$ swift upload cont1 obj11
$ swift upload cont1 obj12
$ swift upload cont1 obj13
$ swift upload cont2 obj21

3. Show the account metadata, indicating that the account key is wrapped with the root encryp-
tion secret in Barbican.

$ swift stat

4. Show the container metadata, indicating that the container keys of cont1 and cont2 have
been wrapped with the account key.

$ swift stat cont1
$ swift stat cont2
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5. Show the object metadata of obj12 in container cont1, showing that the key is wrapped
with the container key of cont1.

$ swift stat cont1 obj12

6. Download an object to verify that it works.

$ swift download cont1 obj12
$ cat obj12

Secure deletion. The second part of the demonstration workflow shows the secure deletion of
objects.

1. Securely delete obj11 from container cont1.

$ swift secdel cont1 obj11

2. Show the object metadata of obj12 in container cont1, showing that the key is wrapped
with the new container key of cont1. The key ID of the object key is still the same, since it
was only rewrapped, not rekeyed.

$ swift stat cont1 obj12

3. Show the container metadata, indicating that the container keys of cont1 and cont2 have
been wrapped with the new account key. Also note that the key ID of cont2 is the same as
before - the old key was merely rewrapped as part of the secure deletion process.

$ swift stat cont1
$ swift stat cont2

4. Show the account metadata, indicating that the new account key is wrapped with the new
root encryption secret in Barbican.

$ swift stat

5. List the root encryption secrets in Barbican. Note that the old root encryption secret(s) have
been deleted as part of the secure deletion process.

$ openstack secret list -c "Secret href" -c "Created"

The process in more detail. We now demonstrate the implementation of secure deletion by
combining a regular deletion of object with an explicit rekey; together these operations securely
delete the object.

1. Show the container metadata for cont1.

$ swift stat cont1

2. Delete an object as usual.
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$ swift delete cont1 obj12

3. Show the metadata of the container. Since it has not changed, if the content of the deleted
object were to be retrieved (e.g., from a backup), it would still be possible to decrypt and
read the object.

$ swift stat cont1

4. Explicitly rekey the container. This generates new container, account, and root encryption
keys. Once the old ones have been deleted, the deleted object obj12 has effectively been
securely deleted.

$ swift rekey cont1

5. Show the metadata of the container to see that the key has changed.

$ swift stat cont1

6. For demonstration purposes, we show secure deletion of object (rekeying), while still re-
taining the actual object data. First, show the metadata of the object

$ swift stat cont1 obj13

7. Securely delete an object using the demo only-flag –retain, which only rekeys/rewraps
parents/siblings, but does not actually delete the object.

$ swift secdel --retain cont1 obj13

8. Show the metadata of the object. The etag is now basically garbage, since it is encrypted
but could not be decrypted, since the keys no longer exist.

$ swift stat cont1 obj13

9. Trying to download the object fails with 403 Permission Denied. This error is generated by
the Swift server because the object cannot be decrypted.

$ swift download cont1 obj13

10. Regular deletion of object still succeeds, since this operation does not need encryption keys.

$ swift delete cont1 obj13
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1.3 Summary

OpenStack is the leading open-source Cloud platform. Prior to ESCUDO-CLOUD, however, its
object-store component Swift was lacking enterprise-grade data-at-rest protection. In the context
of Tasks 2.1 and 2.2, we developed a method for data-at-rest encryption for Swift, along with
enterprise-grade key-management functionality that supports flexible key-rotation and efficient
secure deletion of objects and containers. In WP1, Use Case 1, we implemented the cryptographic
methods within Swift as filters in the web-service pipeline.

Through collaboration and synchronization with the OpenStack project, solutions produced
in ESCUDO-CLOUD have been integrated into the main OpenStack distribution. In particular,
the basic data-at-rest encryption has been adopted by the OpenStack project as part of the recent
Newton release of Swift. Parts of the advanced key-management functionality are currently under
review for being integrated into the main OpenStack distribution. The complete code is available
as open source.

As encryption and key management are performed at the server, client software does not have
to be adapted to benefit from the improved security brought by encrypting the data. Secure deletion
of objects or containers, which is invoked by the client, is accessible through an extension of the
standard Swift API. In summary, through the contributions of ESCUDO-CLOUD, Cloud service
providers using OpenStack Swift as their Cloud object store service now have access to enterprise-
grade data-at-rest protection.
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2. Use Case 2: Secure Enterprise Data
Management in the Cloud

2.1 Background

2.1.1 Overview

This chapter describes the technology and architecture of ESCUDO-CLOUD Use Case 2. Use
Case 2 tools are designed for a supply chain optimization scenario of maintenance (respectively
demand) forecasting between multiple parties in the Cloud. The parties are represented by Cus-
tomers (airlines) who outsource their data to a common Cloud Service Provider (CSP) so that
Maintenance Provider (MRO) can perform efficient maintenance scheduling by secure collabo-
rative forecasting. The Cloud Service Provider does not have access to customers’ data in plain
text. In such a scenario there is the need to enforce possible access restrictions on data stored
in the Cloud according to specified access restrictions. Thus, users are allowed to access dif-
ferent views of data, and to modify different portions of such data. Such techniques should be
non-bypassable and guaranteed not to open the door to possible violations of the confidentiality
or integrity (e.g., by the provider in isolation or in collusion with users of the system) provided
by underlying protection techniques. The problem of ensuring confidentiality of policies that are
evaluated between the parties (i.e., decision trees for forecasting airplane spare parts) are also con-
sidered. Our techniques are designed considering the trade-off between protecting confidentiality
on one side, and the need to guarantee efficient access execution on the other side, meaning they
are server-agnostic and directly applicable to common cloud interfaces [DFLS16].

2.1.2 Context in ESCUDO-CLOUD

Use Case 2 tools utilize encrypted query processing as investigated from research performed under
WP3. Based on the research concepts, Use Case 2 implementation is also leveraging oblivious
order-preserving encryption (OOPE) to preserve the privacy of both Customer and MRO. The
outlined prototype extends existing work of SAP Security Research Karlsruhe project SEEED,
which is also featured in the EU funded projects PRACTICE and TREDISEC. The extensions in
ESCUDO-CLOUD are, for example, represented by Oblivious Order-Preserving Encryption and
our encrypted query processing in multi-user applications.

2.1.3 Background on Multi-User Information Sharing

The aerofleet management use case (Use Case 2) considers a scenario in which multiple cus-
tomers (i.e., airlines) and a maintenance provider (i.e., MRO) share data via a secure computa-
tion approach to enable a CSP to execute an encrypted predictive model. The participants and
a description of their roles in this use case, as well as the flow of information, are provided in
Figure 2.1.
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Figure 2.1: Illustration of how learning, encryption and encrypted query execution is split up
among the parties in the aerofleet management use case

SEEED

SEEED (Search over Encrypted Data) allows data held in a relational database to be outsourced
to a Honest-but-Curious CSP using encryption. SEEED follows the privacy-by-design principle
and does not require encryption keys to be shared with untrusted parties. Instead, it makes use of
property-preserving encryption schemes allowing the Database Management System (DBMS) to
perform meaningful computations on ciphertexts.

The overall architecture of SEEED is illustrated in Figure 2.2. End users establish a connection
to a trusted application server using a secure protocol such as HTTPS. The unmodified application
sends plaintext SQL queries to the SEEED JDBC driver, which translates them into queries on
encrypted data. The untrusted DBMS at the CSP (e.g., SAP HANA or MySQL) executes the
translated query and returns the final result to the SEEED JDBC driver for decryption. In order to
do so, the SEEED JDBC driver has access to the encryption keys stored at the application server.

Adjustable Encryption

Popa et al. [PRZB11] offer an intriguing solution to the encryption type selection problem. They
exploit the fact that the selected Order-Preserving Encryption (OPE) scheme supports a superset
of queries supported by Deterministic Encryption (DET ). DET in turn supports a superset of
queries supported by Randomized Encryption (RND). These properties are used to store values in
layered ciphertexts called onions. For each data item x several onions are computed and stored in
different database columns.

The first onion defined by Popa et al. is constructed by applying the available encryption
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Figure 2.2: Overall SEEED Architecture

Figure 2.3: Onion before and after layer removal

schemes in the following sequence:

ERND(EDET (EOPE(x)))

At first, this onion only allows data retrieval because RND does not support any computations
on the ciphertext. The RND layer is removed when the client encounters a query that requires
deterministic encryption, for example a selection using equality. To remove the layer, the client
sends the decryption key for DRND() to the DBMS. The DBMS invokes a user-defined function to
perform an update such that EDET (EOPE(x)) is stored in the database. Now, the equality query can
be executed. The same procedure is applied in case a query requires order-preserving encryption.
Figure 2.3 illustrates the onion structure and the onion removal process.

Additive homomorphic encryption (HOM) is handled in a separate onion and stored in a sep-
arate column. This separate column enables aggregation operations, but does not harm security,
since HOM provides the same security level as RND. Layering is not possible in this case as it
would destroy the homomorphic property provided by HOM.

The combination of multiple onions with their layered encryption schemes result in a database
adjustment mechanism enabling the support of a wide range of queries. This mechanism allows
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ONION 1 ONION 2 ONION 3 ONION 4

LAYER 1 DET OPE OPE HOM
LAYER 2 RND RND JOIN
LAYER 3 RND

TYPES
Integer, String,
Date, Decimal

String
Integer, Date,

Decimal
Integer,
Decimal

USAGE
Retrieval,
Group By

Joins with
Strings, Range
queries with

strings

Joins, Equality,
Range queries
with numbers

Aggregation

Table 2.1: Onion structures used by SEEED

the database to be adjusted dynamically without knowing all possible SQL queries in advance.
We call such a database adjustably encrypted. The adjustment is unidirectional: once decrypted
to deterministic or order-preserving encryption, it is not necessary to return to a higher encryption
level. This is the case because all inner layers strictly support the functionality of outer layers. Fur-
thermore, security against the CSP has already been weakened, because the less secure ciphertexts
have been revealed at some point and thus have to be assumed available for cryptanalysis.

SEEED employs four onions to support multiple SQL operations within the same query. For
example, an SQL query may perform aggregation while also containing a range condition. More-
over, we provide separate onion structures for integers and strings. We refer to Table 2.1 for a
detailed overview. The types row contains plaintext data types to which the corresponding onion
can be applied. For example, to allow for aggregation of values, integers require the additive homo-
morphic encryption scheme, but strings do not. For sorting items using OPE, different paddings
are used for integer and string values. ONION 1 is used for data retrieval and GROUP BY selec-
tions only because having an onion solely relying on AES-based encryption schemes allows for
very efficient decryption of result sets on the client.

MySQL

MySQL is an open source DBMS owned by Oracle. It is used for web-based applications like
Facebook and Twitter, but also Cloud services can be built on it. It supports SQL and can easily
be accessed from an application. SQL stands for Structured Query Language which is the most
used language to access relational databases. The MySQL database is published under the GPL
(General Public License). It is a relational database storing the structure in files to optimize speed.

2.2 Solution

This section presents the solution approach of our client-server application that solves the problem
described in the previous section.
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Figure 2.4: Client-Server Model (example database)

2.2.1 Solution Approach

First, we describe a core solution that only provides privacy for customers and will be extended in
section 2.2.3 to also provide privacy for the maintenance provider.

System Architecture

The Client-Server Model. Since the application utilizes SEEED to search over encrypted data,
its architecture must also follow the client-server model as illustrated in Figure 2.4. The untrusted
CSP hosts a database server that contains encrypted customer’s data. Moreover, the database
server stores some metadata, which contain information for the onion encryption. In the current
implementation of the prototype, each customer has her own tables, where her data is stored
encrypted with her private encryption keys. The encryption keys are stored on the client side
in a local database and never leave this trusted environment. The client application is a web
application that interacts with a local Tomcat v7 web server application. The SEEED driver is the
central component on the web application server that is used to connect and send queries to the
database server. The user enters queries in plaintext on the client user interface, which sends them
to the web server application. The web server uses the SEEED driver to transform the query in an
encrypted form, that can be executed on the encrypted data. After the query is executed, the web
server application received the encrypted results, decrypts them, and sends the plain result to the
client application.

User Interface. The user interface of the client application is realized with SAPUI5, a design
framework that uses JavaScript and a model-view-controller architecture. The logic is imple-
mented in Java classes. Some of these Java classes are servlets that interface the communication
between the client and the database server. Figure 2.5 illustrates how this interaction is performed.
A user interacts with the JavaScript frontend and triggers a GET or POST request, which is pro-
cessed by a servlet on the web server application. The servlet makes use of other Java classes to
connect to the encrypted database via the SEEED driver. After the encrypted result is decrypted
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Figure 2.5: User Interface Interaction (example database)

the data is transformed into the data exchange format JSON and loaded by a JSON model in a
controller of the client application. This JSON model is linked to a displaying element, in this
example a table, and lets it display the desired data. It should be noticed that the result of the
request is only decrypted if the SEEED driver finds the appropriate decryption keys in the local
key storage. Hence in the views of the MRO or the CSP customers’ data are always displayed in
encrypted form.

Application overview

The solution consists of three distributed applications, one for each actor in the system. The Cus-
tomer’s application encrypts the data and stores them on the database server. The MRO application
constructs a decision tree and transforms it to SQL requests that are encrypted by customers and
later executed on the encrypted databases. The CSP application receives encrypted SQL queries
from customers, executes them and sends the result to the MRO. In our prototype implementation
there is only one frontend with one view for each actor. In a production implementation the views
will be completely separated in different applications to support the novel concept of oblivious
order-preserving encryption (see Section 2.2.3). Each view interacts with a corresponding servlet
to access the data on the database server. In these interactions Ajax GET requests are triggered by
user actions on the frontend and submitted with a user identification number. The servlets process
these requests and later transform the resulted data into a JSON array, which is forwarded to the
view.

Customer Application. This application consists of the customer servlet and the database ac-
cessor.
The customer servlet checks which customer is active and triggers a GET request with the cus-
tomer ID attached. After the request is processed, the servlet builds a JSON array out of the data
and sends it back to the view where it is displayed. For this display the SEEED driver is needed to
decrypt the data, which is stored in the cloud database.
The database accessor sets up the connection between the prototype application and the HANA
database, using the SEEED Driver or a simple plain connection. Furthermore, it provides the
SEEED driver with several meta data tables and user information about the database in use. In the
current prototype, there is only one database accessor component for all parties, but there would
be an accessor for every role that needs a database connection.

Server Application. In contrast to the customer servlet, the cloud servlet forwards data in an
encrypted format. This ensures, that the CSP cannot read any plaintext from the customer tables
within her database.
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Figure 2.6: Customer Application

MRO Application. This application consists of the MRO servlet, the decision tree, the binary
decision tree.
The MRO servlet provides the evaluation data. Furthermore, it provides the data from which the
binary tree is visually generated. For that, two Java classes are needed. First, the MRO Class
which builds a JSON object and fills it with the data of the decision tree: attribute names of the
nodes, number of nodes, executed operation. Second, the aggregated probability of a upcoming
overhaul, which results out of the given path of the tree.
The Java class decision tree builds up the binary decision tree from the given historical data of
the service provider. Furthermore, it generates a SQL query that describes the tree. This SQL
statement is forwarded to the customer who has the key to her database and is therefore able to
encrypt the SQL the same way the data in her cloud database is. In that way, after forwarding the
needed SQL to the CSP, the CSP is able to use the encrypted SQL for a search on the encrypted
data without awareness of the SQL request or the requested data itself.
The binary decision tree is a Java class, which is essential for forecasting. For the prototype the
tree is built manually, but in a production environment historical overhaul-data should be used to
build it. It consists of the following information: The attribute to be tested, the operation that
has to be applied (<,>,=), the threshold of said attribute which defines whether a part should be
exchanged or repaired.

The live data of the attribute of a part from the customer database is compared with the thresh-
old in coherence with the operation. Each node contains such a statement that could be true or
false. After computing the whole tree for a specified part, a repair/replace probability for each leaf
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Figure 2.7: Server Application

is computed.

2.2.2 Oblivious Order-Preserving Encryption

This section presents an oblivious order-preserving encryption protocol, which allows the MRO
to encrypt the decision tree without revealing any information on it to the customer. At the end
of the protocol the MRO will receive a tree encrypted with the customer’s private key. No further
information will be revealed to any party participating in the protocol.

Intuition

So far we have been concerned about the privacy of customer data (i.e., customer’s privacy). How-
ever, there is another security property that we want to ensure. The application does not give access
to customer data in plain form to the MRO. Hence to run the classifier on encrypted data the MRO
must first send the decision tree to the customer, who can then compute a corresponding encrypted
version of the tree. However, assume the tree itself contains sensitive information. After all, the
MRO has accomplished some amount of work to produce the tree and may not want to reveal any
information about it. Therefore, one should also consider the MRO’s privacy.
A naive way for the MRO to classify customer data with her decision tree while preserving both
customer’s and MRO’s privacy is to use a private decision tree classifier. This allows to traverse the
decision tree using the customer’s input vector x such that the MRO does not learn the input x, and
the customer does not learn the structure of the tree and the thresholds at each node [BPTG14]. In
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Figure 2.8: MRO Application

particular, the customer should not learn the path in the tree that corresponds to x since the position
of the path in the tree and the length of the path leak information about the model. Assume that
input x is a data record with n fields. While traversing the tree, the MRO and the customer can suc-
cessively compute a garbled circuit for comparison where the customer garbles the circuit and the
MRO evaluates it. The inputs to the garbled circuit are respectively a threshold in the decision tree
for the MRO and the corresponding data field for the customer. Although current implementations
of garbled circuits are efficient, the computation costs to classify a whole database is assumed too
high. Furthermore, since garbled circuits require sending garbled tables and inputs for each new
computation over the network the communication costs will also be very large.
Another way to privately evaluate the decision tree is to express it as a polynomial P whose output
is the result of the classification, the class predicted for x. In this interpretation, the MRO and the
customer privately compute inputs to this polynomial based on x and the thresholds. Finally, the
MRO evaluates the polynomial P privately [BPTG14]. This solution also suffers from the same
problems as the garbled circuits approach, since it can only classify one input at a time and the
customer must be involved in the classification protocol.
To reduce the communication costs one can consider a solution based on fully homomorphic
encryption (FHE), where the customer encrypts her data with a public-key FHE scheme before
outsourcing them to the cloud. In this case, the MRO can encrypt the thresholds of the deci-
sion tree using the public-key FHE scheme and then use the homomorphic property to compute
the comparison. Since FHEs return encrypted results, a customer still has to decrypt the result
of the comparison. Also this approach will have a large overhead as only one data record can
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be classified at a time and FHE schemes are still not efficient enough for practical applications.
Furthermore, with FHE there is another problem, namely the fact that a malicious MRO can use
the FHE evaluation algorithm in another function instead of the comparison. For example it can
homomorphically evaluate the addition of a ciphertext of an unknown plaintext m with a random
ciphertext of zero to learn m after decryption.
As already mentioned in the previous section, we will rather encrypt the customer’s dataset with
an order-preserving encryption. Afterwards, the decision tree is encrypted with the same order-
preserving encryption using the same key, and finally transformed into a set of SQL-queries that
can be executed directly on the encrypted data. To preserve the MRO’s privacy, oblivious OPE
allows the MRO to encrypt the thresholds of the decision tree without revealing any information
to the customers. Customers are only involved during the encryption of the tree. The MRO sends
SQL-queries directly to the database server during classification.

Building Blocks

Mutable OPE (mOPE). Order-preserving encryptions leak the order of the plaintexts because
they allow to perform comparison directly on the ciphertexts. Hence the ideal security guarantee
that can be achieved with OPEs is that no information about the plaintexts besides the order is
revealed. In [PLZ13] Popa et al. showed that the ideal security of OPE is possible by relaxing the
definition and allowing some ciphertexts to mutate during the encryption process. In the following,
we briefly review this scheme and an improved variant [KS14] that are relevant for oblivious OPE.
Popa et al.’s scheme (mOPE1). In [PLZ13] Popa et al. presented the first OPE that achieves
ideal security by using the fact that most OPE applications only require a relaxed OPE interface
which is less restrictive than the interface of encryption schemes. The first aspect of this relaxed
interface is interactivity: the encryption scheme is implemented as a protocol running between a
client that also owns the data to be encrypted and an honest-but-curious server that stores the data.
The second aspect is the mutability property which allows some ciphertexts of already-encrypted
values to change over time as new plaintexts are encrypted. The basic idea of Popa et al.’s scheme
is to have the encoded values organized at the server in a binary search tree (OPE-tree), where
each node is encrypted with an encryption scheme (AES). A binary search tree is a tree in which
for each node v, all the nodes in the left subtree of v are strictly smaller than v and all the nodes in
the right subtree of v are strictly larger than v. To encrypt a value x the client and the server traverse
the tree, where the client receives the current node v of the search tree, decrypts and compares it
with x. If x is smaller (resp. larger) then they continue with the left (resp. right) child node of v.
If the chosen childnode v′ is null then x is inserted at this place otherwise v′ must be decrypted
and compared by the client. The OPE encoding of x is then the path from the root of the tree to x,
where an edge to the left (resp. to the right) is encoded as 0 (resp. 1), padded with 10 · · ·0 to the
same length l. The server also maintains a table (OPE-table) containing the AES ciphertext and
corresponding OPE encoding for each encrypted plaintext. Before encoding a value x the server
first looks in the OPE table. To ensure that the length of OPE encodings do not exceed the defined
length l, the server must occasionally perform balancing operations, which require updates of the
OPE table (i.e the OPE encodings of some already encrypted values mutate to another encoding).
Kerschbaum & Schröpfer’s scheme (mOPE2). The insertion cost of Popa et al’s scheme is high
because server and client must traverse the tree together. To tackle this problem, Kerschbaum &
Schröpfer proposed in [KS14] another ideal secure, but significantly more efficient, OPE scheme.
Both schemes use binary search and are mutable, but the main difference is that in the scheme of
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[KS14] the state is not stored on the server but on the client. Hence the client does not need AES
encryption as in Popa et al.’s scheme. Instead the client maintains for each plaintext x a pair 〈x,y〉
in the client state, where y is the OPE encoding of x. To insert a new plaintext the client finds two
pairs 〈xi,yi〉 , 〈xi+1,yi+1〉 in the state such that xi ≤ x < xi+1 and computes the OPE encoding as
follows:

• if xi = x then the OPE encoding of x is y = yi.

• if yi+1− yi = 1 then the client balances the search tree.

• if yi+1− yi > 1 then the OPE encoding of x is y = yi +
⌈ yi+1−yi

2

⌉
.

The encryption algorithm is keyless and the only secret information is the state, which is not pre-
generated but rather grows with the number of encryptions. The client uses dictionary compression
to keep the state minimum and hence does not need to store a copy of the data.

Yao’s Garbled Circuit. In garbled circuit protocols [LP07, LP09, PSSW09] a party called Gen-
erator garbles the Boolean circuit of the function to be computed and sends it to a second party,
Evaluator, that evaluates and outputs the result. To garble the circuit the generator chooses ran-
domly for each input/output wire one secret key representing 0 and another secret key representing
1. Then, it replaces the bits by the corresponding secret keys in the truth table for each gate of
the circuit and uses the input keys to encrypt the output keys. The result is called Garbled Table.
Assume outputs of gates G1 and G2 are inputs of a gate G3 and that G1, G2 have already been gar-
bled. Then, to garble G3 the generator randomly chooses two output keys and uses the output keys
of G1 and G2 as input keys for G3. The garbling procedure results in a set of garbled tables that are
sent to the evaluator as well as the keys corresponding to generator’s input. Finally, both parties
engage in an oblivious transfer protocol that allows the evaluator to learn the keys corresponding
to her input without revealing any information on the actual input to the generator.

Homomorphic encryption. A homomorphic encryption scheme is an encryption scheme that al-
lows computations on ciphertexts by generating an encrypted result whose decryption matches the
result of operations on the corresponding plaintexts. With fully-homomorphic encryption schemes
one can compute any efficiently computable function, but with the current state of the art, their
computational overhead is still too big for practical applications. Efficient alternatives are addi-
tive homomorphic encryption schemes which allow specific arithmetic operations on plaintexts,
by applying an efficient operation on the ciphertexts. To illustrate the concept of oblivious OPE
protocol we will use the additive homomorphic encryption scheme of Paillier. It is a public-key
scheme and has semantic security.

Oblivious OPE Protocol

An OOPE protocol is a three-party protocol. The first party, i.e., the Data Owner (DO), encrypts
her data with an order-preserving encryption as described in the previous section and stores the
encrypted data in a cloud database hosted by the second party, i.e., the CSP. The third party, Data
Analyst (DA), needs to execute analytic queries, like how many values are in a given range, on the
data owner’s encrypted data. However, the DO’s data is encrypted with a symmetric key and the
DA’s queries contain sensitive information. Therefore, the DA interacts with the DO and the CSP
to order-preserving encrypt the sensitive queries values without learning anything else or revealing
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any information on the sensitive queries values.

Initialization. We assume the DO’s dataset is fixed and does not change, i.e., the DO does not
insert new values during the OOPE protocol. This is a realistic assumption since the decision
tree classification operates on fixed dataset. Let D = {x1 · · ·xn} be the unordered DO’s dataset.
First, the data owner uses mOPE2 by Kerschbaum & Schröpfer to encrypt the data to a set of pairs
〈xi,yi〉 and sends the encrypted results yi to the cloud as in [KS14]. Second, the DO uses mOPE1

with Paillier instead of AES to generate the OPE-tree and the OPE-table as in [PLZ13]. Let [[x]]
denote the Paillier encryption of x then the OPE table is a list of pairs 〈[[xi]],zi〉, where zi is the
OPE encoding as in [PLZ13], i.e., the binary encoding of the path from the root of the tree to x
padded with 10 · · ·0 to the length l of the OPE encoding. Then, the DO replaces each pair 〈[[xi]],zi〉
of the OPE-table with the pair 〈[[xi]],yi〉 and sends the OPE-tree and the OPE-table to the CSP.
The reason of replacing zi by yi is that the DA will receive the order of her input after the OOPE
protocol. However, zi always reveals the corresponding path in the tree, allowing the DA to infer
more information from the protocol than required. In contrast, mOPE2 allows the DO to choose
not just the length of the OPE encoding, but also the ciphertext space like 0 · · ·M− 1. If log2M
is larger than the needed length of the OPE encoding and M is not a power of 2, then yi does not
reveal the position of [[xi]] in the tree.
For example, assume the data set D = {10,20,25,32,69}, l = 4, M = 28 and the insertion order
is 32,20,25,69,10. The aforementioned initialization procedure generates the OPE-tree A , the
OPE-table T, and the client state as depicted in Figure 2.9. Then the OPE-tree and the OPE-table
are sent to the CSP as initial server state.

Figure 2.9: Example initialization

Algorithm. Let x be the input of the DA and y the corresponding OPE encoding that is to be
computed. To compute y the three parties traverse the OPE-tree obliviously as depicted by Fig-
ure 2.10. Let [[x]] denote the current node (at beginning the root node) of the OPE-tree and 〈[[x]],y〉
the corresponding pair in the OPE-table, then the parties execute an oblivious comparison protocol
to compare x and x.

First, the CSP retrieves the current node [[x]] of the tree, chooses a random integer r, homo-
morphically computes [[x+ r]], sends [[x+ r]] to the DO, and sends r to the DA. Second, the DA
and the DO engage in a Yao protocol for comparison with input x+ r and x+ r respectively, where
the garbled circuit has two output bits and is defined according to [KS08, KSS09]. The first bit bg

tells if x is larger than x and the second bit bi tells if the inputs are unequal. Since the result of the
comparison leaks information, the DA and the DO also input masking bits ba and bo respectively
in the garbled circuit. Therefore, the actual outputs of the garbled circuit are bg⊕ ba⊕ bo and
bi⊕ba⊕bo, where ⊕ denotes the XOR operation.

The CSP receives the results of the comparison protocol, reconstructs bg and bi, and decides
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Figure 2.10: Oblivious OPE Protocol

what to do next:

• If bi = 0 (i.e., x = x) then the CSP looks for the pair 〈[[x]],y〉 in the OPE-table and sets y = y.

• If the input values x, x are unequal (i.e., bi = 1) then the next node to consider is either the
left child node or the right node child node of [[x]] depending on bg = 0 or bg = 1 respectively.

– If the next node is not null, then the CSP randomizes again and sends the values for a
new comparison step.

– If the next node is null and bg = 0 holds, then there exists 〈[[x′]],y′〉 in the OPE-table

such that x′ < x < x: y = y′+
⌈

y−y′
2

⌉
.

– If the next node is null and bg = 1 holds, then there exists 〈[[x′′]],y′′〉 in the OPE-table

such that x < x < x′′: y = y+
⌈

y′′−y
2

⌉
.

In the last step, the CSP sends y to the DA, which sends [[x]] back to the CSP. Notice that, even if
x = x holds, the honest CSP must require the DA to send back the ciphertext [[x]]. This prevents
the DA from inferring that in the last comparison the equality of inputs to the garbled circuit held.

Security. The security of the protocol depends on randomization of inputs, the security of Yao’s
protocol and the honesty of the CSP. If the CSP is honest and do not collude with any other party,
then the view of the DO contains a series of randomized plaintexts data and her view of Yao’s pro-
tocol, which does not even allow to learn the result of the comparisons because of the masking bit.
The DA observes a series of random integers and her view of Yao’s protocol, which is completely
random as well. The CSP receives the ciphertexts [[xi]] of Paillier’s scheme, which is semantically
secure, as well as the OPE encoding of mOPE2, which is ideal secure.
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SCAPI - Secure Communication API. We implemented the OOPE protocol described above
with the SCAPI library. SCAPI is an open-source Java library for implementing secure two-party
and multiparty computation protocols. It provides a reliable, efficient, and highly flexible crypto-
graphic infrastructure [EFLL12]. The main idea of SCAPI is to offer a practical and applicable
solution for secure computation. The difference between SCAPI and previous secure computa-
tion projects is that SCAPI does not want to solve a special problem. It is more general and
independent of a specific environment. Secure computation can be useful for electronic voting,
privacy-preserving data mining, or private database queries [EFLL12]. SCAPI provides differ-
ent encryption primitives, among which oblivious transfer and garbled circuit are relevant for
our application. Furthermore, it provides a communication layer for multiparty communication
[EFLL12].

2.2.3 OOPE Integration

To preserve privacy for both MRO and Customer (airline), this section describes the integration
of OOPE (from section 2.2.2) into the core solution (from section 2.2.1). To this end, the applica-
tion is distributed among the involved parties which leverage OOPE to order-preservingly encrypt
MRO’s inputs while revealing only the corresponding order information to the MRO and nothing
else. As before, the CSP also learns only the order information such that it can still execute queries
from MRO. However, Customer remains oblivious on any input coming from the MRO.

Database Design

In UC2 the DO which is an airline stores information about its airplanes. This information consists
of the following data:

• engineid: Engine ID,

• enginesn: Engine Serial Number,

• enginepn: Engine Part Number,

• fh_limit: Flight hour limit,

• fc_limit: Flight cycles limit,

• tbsv: Time before shop visit,

• fhsn: Flight hours since new,

• fcsn: Flight cycles since new,

• tslsv: Time since last shop visit.

The database contains a corresponding table, which we will refer to as the data table. The
corresponding view from the application is illustrated in Figure 2.11 showing the decrypted data
to the customer. Each column will be order-preserving encrypted allowing range queries to be
executed on all columns without decryption. OOPE requires the underlying OPE scheme to be
stateful. The state consists of an OPE-table and an OPE-tree. As the OPE-table can be derived
from the OPE-tree, only the OPE-tree is stored in the same database as the data table. Each node of
the tree consists of a homomorphic ciphertext and the corresponding order. Additionally, we store
for each node some meta-information resulting in a database table with the following attributes:
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• hCipher: Homomorphic ciphertext,

• oCipher: Order ciphertext,

• isRoot: Boolean value that is true if the node is the root of the tree,

• pLchild: Pointer to the left child of the node,

• pRchild: Pointer to the right child of the node,

• oCipherRep: Auxiliary attribute for rebalancing the tree.

In the following, we refer to database tables storing the state of the OPE scheme as the OPE-table
or state table. For each column of the data table that is stored in an order-preserving manner, such
a state table is needed to represent the OPE state for that column. In the application, the tables are
named “opetree_X”, where “X” is the name of the column. Because there is only one data table in
our application, the data table is not specified in the name, otherwise the data table name should
also be part of the OPE-tables’ names.

In the UC2, all columns of the table are stored order-preserving. For the new application,
the database structure is displayed in Figure 2.12. Table airplanes_enc(engineid, enginesn, en-
ginepn, fh_limit, fc_limit, tbsv, fhsn, fcsn, tslsv) stores the encrypted data table. All attributes
of this table are foreign keys referring to the order encryption in the corresponding OPE-tree.
Table metadata(table, column, isOPE) stores metadata as mentioned above. Finally, tables ope-
tree_<column>( hCipher, oCipher, isRoot, pLchild, pRchild, oCipherRep) store the OPE state of
the corresponding column.

The SEEED driver from Section 2.1.3 encrypts plaintexts in onions with different encryption
schemes as layers. For our supply chain application only the order-preserving encryption scheme
is relevant. Hence, to integrate OOPE in the web application, a database management system is
sufficient. However, a combination of OOPE with SEEED is desirable, if the application has to
be integrated in a larger context that requires more than OPE. The integration is actually simple,
but tedious. Therefore, we have implemented the new web application with only MySQL for
simplicity. Hence, a standard MySQL Server as described in section 2.1.3 will be used. This is
underlining that oblivious order-preserving encryption can be retrofitted into a standard DBMS
with small effort.

System Architecture

Each involved party - DO, MRO and CSP - is implemented as an independent application fol-
lowing the client-server model. The DO stores her encrypted data on a MySQL database server,
hosted by the CSP. Additionally, all tables needed for order-preserving encryption are stored at
the CSP as well. The DO stores the private encryption and decryption key on the client side in a
trusted area. The applications are deployed on different Tomcat v7 web servers and can be called
via HTTP using a client browser. During the OOPE protocol the applications communicate via a
socket connection. The database connection is a JDBC connection, the SQL queries have to be
encrypted before being transferred to the database server. Otherwise they cannot be executed. In
the architecture displayed in Figure 2.13, the database and the CSP application are hosted by the
CSP.

Each application’s user interface is realized in SAPUI5, a design framework that uses JavaScript
and a model-view-controller architecture. The interface is connected to a servlet and some Java
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Figure 2.11: Customer’s View

Figure 2.12: Database Structure
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Figure 2.13: System Architecture

Figure 2.14: DO Application Architecture

classes implementing the programming logic, see Figure 2.14. All activities are triggered by the
user via the frontend and will then be handled by the web server. The frontend calls the servlet
on the server using HTTP GET and POST requests. For example, when the user in the DO appli-
cation adds a new engine, the frontend sends the data via POST request to the servlet. There, the
data is received, encrypted and inserted into the database. If the POST request is successful, the
frontend sends a GET request to the web server to get the updated data table with the new created
engine. The web server gets the relevant data from the database, decrypts it, transfers it in a JSON
object, and responses to the client.

Application Structure

The UC2 prototype with OOPE consists of three independent applications, which have common
components. These common components are first described before discussing the particular spec-
ifications for each application.
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OOPE Classes. One of our non-functional requirement is the expandability of the applications
toward homomorphic encryption and order-preserving encryption schemes. For this purpose, an
abstract class for each actor is defined that implements all methods needed for any type of oblivious
order-preserving encryption by that party. This abstract class is called oblivDO_Parent in the
DO application and correspondingly oblivDA_Parent and oblivCSP_Parent in the DA and CSP
application. Every inheriting class needs to implement the (oblivious) order-preserving encryption
protocol and some additional methods to fulfill the functional requirements.

DO Application The DO application shows the plain data of the DO, in our use case the data
of airplanes. Furthermore, a user can add new records. The displayed data is stored in a cloud
database at the CSP. For security reasons, the data is encrypted before being sent to the CSP. The
DO uses order-preserving encryption, thus DO can execute range queries on the encrypted data.
Also, the DO application is involved in the OOPE protocol, helping MRO to encrypt data with-
out revealing any information about this data. The abstract super class oblivDO_Parent and the
extended class DataOwner implementing the encryption algorithm are displayed in Figure 2.15.
The following listing gives an overview over the most important methods of each class.

• oblivDO_Parent(homEncType): The constructor of the class gets the homomorphic encryp-
tion type as parameter. In the method, the private attribute homEncType is set and depending
to this parameter an object of the encryption class is created and saved in the private attribute
homEnc.

• oblivOpeInit(): This method initializes the OOPE protocol for the calling party. First, the
connections to the other parties are established, then the DO is set as the Sender for the
oblivious transfer and a Boolean circuit for comparison and equality check is generated.

• homEncrypt(Object), homDecrypt(Object): These two methods call the corresponding method
for homomorphic encryption and decryption on the attribute homEnc but cast the input and
output value accordingly.

• oblivOpeExec(): This is an abstract method, which needs to be implemented by the extend-
ing class. This method implements the protocol part for the corresponding party.

The actual implementation of order-preserving encryption is realized in the class DataOwner
which extends oblivDO_Parent by the following methods:

• DataOwner(homEnc): The constructor. Here, the super class constructor is called to set the
homomorphic encryption type.

• addEngine(Engine): The method is called from the servlet if the Customer inserts a new data
record into the database by adding a new airplane engine. The parameter object contains all
information about the new engine as plaintext. All attribute values of the engine are order-
preserving encrypted and then inserted in the database. The DO has a direct connection to
the cloud database, so the CSP is not involved in the process.

• getPlainTableAsJson(): The method returns the current data table with all engines in plain-
text as a JSON object. It is called from the frontend when the application is started and after
a new engine has been added. The data is read from the database, decrypted, and put in the
JSON object.
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Figure 2.15: DO Application Classes

• oblivOpeExec(): The method implements the OOPE protocol for the DO invoking many
times the private method oblivCompare() to execute an oblivious comparison. Each oblivi-
ous comparison requires generating some random input using generateInput() before invok-
ing yaoCompare() to execute Yao’s garbled circuit protocol.

CSP Application. The CSP application displays the encrypted data of the DO, but there is no
activity that can be triggered by the user. Nevertheless, the CSP application also takes part in
the OOPE protocol. Class oblivCSP_Parent does nearly the same as oblivDO_Parent in the DO
application. However, the CSP does not need the method homDecrypt(), since homomorphic de-
cryption requires the private key known only to the DO. The new method traverse() is called during
the OOPE protocol. As input it gets a byte, which contains the result of the comparison, a node
of an OPE-tree, and the name of the OPE-tree. Depending on the input byte, it returns the right or
left node of the input node. The OOPE algorithm is implemented in subclass CloudProvider. All
methods except the constructor and getEncryptedTable(), are used in the OOPE-protocol. Method
getEncryptedTable() returns a JSON object that contains all data stored on the database, and is
called by the servlet to send the data to the client.

DA Application. The DA application displays a decision tree to analyze data on its user inter-
face. DA strives to evaluate the repair and replace probability of an airplane. By selecting one
leaf, the corresponding path is converted into an SQL query, which is then encrypted during the
OOPE protocol. Class oblivDA_Parent owns more methods than the super classes of the other
applications. All the new methods handle the decision tree. To display the tree, the servlet calls
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Figure 2.16: CSP Application Classes

the method getDecisionTreeAsJson() and gets back a formatted JSON object. How the decision
tree is stored and created is explained in section 2.2.3. The next action triggered by the user is
the evaluation of the tree or a leaf. In this case the methods getDecisionTreesEvaluationAsJson()
or getLeafAsJson() are called. They start the OOPE protocol. First oblivOpeInit() establishes the
connections to the CSP and DO and prepares the execution of the protocol, afterward oblivOpe-
Exec() is called. The parameters of this method deliver two lists containing the plaintexts of all
selection attributes that need to be order-preserving encrypted and the names of the corresponding
columns. It returns an array with all order encodings in the same order as the plaintexts in the
input list. The computation of the order encoding is implemented in the class DataAnalyst.

Homomorphic Encryption. For OOPE, homomorphic encryption is needed. In our proto-
type application we implemented Paillier encryption. For the future, we plan to use another
homomorphic encryption that also supports addition. Therefore, the connection between the
obliv<Party>_Parent class and the encryption class should be implemented as general as possi-
ble. Hence, an interface named homeEnc has been defined providing the methods generateKey(),
encrypt(), decrypt() and add(). Class Paillier implements the methods, see Figure 2.18. Paillier
Scheme is an asymmetric encryption, therefore there are two calling modes: Public and Private.
When a Paillier object is created, the mode and the corresponding key file are given as parame-
ters. All implemented homomorphic encryption types are listed in enumeration homEncType. The
classes are the same for the DO and the CSP application, the DA does not need the homomorphic
encryption.

Multiparty Computation. The communication during the OOPE protocol is realized by socket
connections between DO, DA and CSP. For this purpose, all applications use the Channel interface
and the class Party from the SCAPI library, see Section 2.2.2. The CSP application also uses the
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Figure 2.17: DA Application Classes

Figure 2.18: Homomorphic Encryption Classes
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Figure 2.19: OOPE Classes for DO

class ReceiverThread to enable multi-threading while waiting for the results of the garbled circuit
computation. The CSP application’s classes are illustrated in Figure 2.20. The garbled circuit
protocol runs only between the DO as generator and the DA as evaluator. Correspondingly, in the
oblivious transfer protocol the DO is the sender and uses therefore an object that implements the
interface otBatchSender to play this role. This object gets an object of type Party as parameter
which contains connection data as IP-addresses and port numbers relevant to interact with other
parties in the Multiparty Computation. This connection data is read from a configuration file that
needs to be created manually before starting the application. The DO uses the class PartyOne to
implement its generator’s role of the Yao protocol. This class gets the channels to the evaluator
(the DA), object OT sender and the Boolean circuit as parameters. The Boolean circuit is created
in class ScapiCircuitFile, which is not a built-in SCAPI class and is only used to generate the com-
parison circuit for our application in a SCAPI-format. The generated circuit is stored in a text file
that is read when creating the FastGarbledBooleanCircuit object. During protocol execution, the
DO first invokes the method garble of the class FastGarbledBooleanCircuit to garble the Boolean
circuit and both parties (the DA and the DO) execute an oblivious transfer by invoking simulta-
neously the method transfer of the class otBatchSender (resp. OTBatchReceiver). Then, the DO
uses the Channel to the DA to send her garbled input and garbled table and translation table of the
circuit, which are used by the DA to initialize its local FastGarbledBooleanCircuit object. Finally,
the DA invokes the methods setInputs, compute and translate of the FastGarbledBooleanCircuit
class to set the input, evaluate the garbled circuit, and translate the output.

The structure of the OOPE classes for the DA application is similar, see Figure 2.21. The fact
that the DA is the receiver and not the sender makes the difference between the two applications
concerning the garbled circuit and the oblivious transfer protocols. As a consequence, the interface
OTBatchReceiver and the class PartyTwo are used instead of OTBatchSender and PartyOne.
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Figure 2.20: OOPE Classes for CSP

Figure 2.21: OOPE Classes for DA
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Database Connection

DO, DA and CSP applications use a connection to the cloud database, but the access privileges
differ. The DO application has full access to the data. It can modify and update exiting data or
add new entries. In the prototype application, the functionality is limited to adding new entries.
Other functionalities shall be implemented in a later version. The CSP application has full access
to the encrypted database, but cannot decrypt. It is assumed that the CSP does not manipulate the
data in the cloud database. The main difference between database operations for CSP and DO is
that the CSP application may perform rebalancing operations for an OPE-tree. All other database
operations are reading operations. The DA application has restricted access to the database. It
is only allowed to execute range queries that return an aggregated result, like count queries. In
the prototype application, the only query executed by the DA application is: SELECT COUNT(*)
FROM <data table> WHERE <conditions>. Each application owns a database connector class.
In the DO and CSP applications the class contains the logic for the corresponding database oper-
ations. If another OPE scheme is chosen, the database accessor classes must be adjusted. The DA
application’s class has only one method selectQuery() to execute the SQL statement.

DB Connection for DO. All methods that access the cloud database are summarized in class
CloudDBConnectorDO, see Figure 2.22a. When creating an instance of this class, the current ho-
momorphic encryption object is passed as a parameter to enable encryption and decryption. The
class does not only establish a connection to the database, it also contains some database opera-
tions. The method getEncryptedTabe() returns the ResultSet for the SQL-query Select * From
<datatable> and is called by the DataOwner class when the frontend loads. Function getHCi-
pher() returns the homomorphic encryption of the given order encryption in the given OPE-tree.
Method insert() gets a new value and the corresponding column of the data table as parameters. It
computes the order encryption for the new value and inserts it, if necessary, into the OPE-tree of
the given column. It returns the order encryption for the new inserted value. However, it does not
insert the value into the data table. This is done by calling method insertByStmt() specified in the
DataOwner class after all attributes of an engine are order-preserving encrypted.

DB Connection for CSP. The database connection for the CSP differs from the one of the DO
application because the CSP does not insert new values into the database. It reads the data or
rebalances the OPE-trees. As shown in Figure 2.22b, class DBConnector does not contain public
methods because it is only called from the CloudProvider class. The most complex methods are
the following.

• balance(String): The method rebalances the OPE-tree for the column given as parameter. It
is called in the OOPE protocol whenever the interval between the minimum and maximum
order encryption is smaller than two.

• getPrepCipher() / getSuccCipher(): The methods return the order encoding of the closest
smaller / greater value in the OPE-tree compared to the first parameter. The other two
parameters are the minimum / maximum order encoding and the name of the OPE-tree
where to search. If there is no smaller / greater value, then the method returns the minimum
/ maximum order encoding value. The method is called when the right place for a new value
in the OPE-tree is found and the order encryption must be computed.
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(a) DB Class for DO (b) DB Class for CSP

Figure 2.22: Database Classes

Decision Tree. The DA application displays a decision tree which is important for the forecast-
ing. For the prototype, the tree is stored in text files which are read by the method read() of the
class DecisionTreeReader. Then, a DecisionTree object is created which itself creates Decision-
TreeNodes and DecisionTreeLeafs. A node consists of three main information:

• attributeName: The attribute/column to be checked,

• splitAttribute: The threshold,

• operation: < or ≥.

Each node can be converted to a condition of an SQL query. Method getSQLStatement() returns
the SQL condition of the current selected node. Method getCompleteSQLStatement() calls get-
SQLStatement() for all predecessor nodes and returns a complete SELECT query with the table
name and all conditions for the current selected node. A leaf is a node with both attributeName
and splitAttribute empty. Leaf nodes extend the DecisionTreeNode with the attribute probability.
A leaf node stores the repair probability of an engine that fulfills all criteria of the path to that leaf.
The replacement probability is the converse probability of the repair probability.

Algorithmic Design

This section shows how the DO, DA and CSP applications work from the algorithm perspective.
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Figure 2.23: Decision Tree Classes

Prerequisites. All three applications are deployed using a Tomcat v7 web application server and
can be accessed on the client browser. A MySQL database server is running and hosts a database
that contains all tables defined in section 2.2.3.

Process. The OOPE is started in the DA application by clicking on a leaf of the decision tree.
The frontend controller sends AJAX requests to the DO, DA and CSP servlets. A GET request
to the DA application’s servlet with the leaf-ID as parameter and POST requests to the servlets of
the DO and CSP application with the string-parameter "obliv". The DA servlet reads the incoming
leaf ID and prepares the return object by setting the repair probability and SQL-statement for the
path of the corresponding leaf node. Finally, it calls the method getLeafAsJson() on the Data-
Analyst object, which returns estimated number of repairs and replacements in a JSON object:
"leafIdKey":4,"repair":"1.4","replace":"0.6". In the next step, the call is forwarded to method
evaluateLeafOfDecisionTrees(), which takes the leaf ID and the decision tree as input. The method
computes the path to the given leaf and puts all splitAttributes and attributeNames of the nodes
in two lists. Then, the DA application is ready to start the OOPE protocol by calling the method
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Figure 2.24: OOPE Sequence Diagram

oblivOpeInit(). The other two applications (DO and CSP) do not need to compute anything before
the OOPE protocol is started. Their servlets directly call the oblivOpeInit() method. A socket
connection between each application is established with the other applications and all initializa-
tion work for the protocol is done. In all three applications, the OOPE protocol is carried out by
method oblivOpeExec(). The sequence diagram in Figure 2.24 shows the interaction between the
three parties during the protocol. In the DA application, the method returns an array that contains
the order encryption for all splitAttributes of the inserted list. Next, the SQL statement for the
leaf is generated and all splitAttributes are replaced by the corresponding order encryption. Then,
the encrypted SQL query is executed on the database and -for the airline scenario considered by
UC2 - the amounts of repairs and engine replacements are computed. The result is returned as a
JSON object. The servlet aggregates it with the SQL-query, the leaf ID and the repair probability
in another JSON object and answers the GET request with this object.

2.3 Summary

This chapter outlined the final prototype for information sharing in a single cloud architecture
between multiple users. Specifically, we evaluated how Use Case 2, an airline business scenario,
is realized between a cloud service provider, customers (airlines) and an MRO (Maintenance,
Repair and Overhaul) provider. We also discussed existing secure computation approaches as
well as property-preserving encryption schemes. To achieve privacy for the MRO as well as the
customers, the prototype is based on two technological foundations which are integrated into the
SAP research project SEEED. First, adjustable, property-preserving encryption schemes to ensure
customer privacy against the CSP. However, order-preserving encryption schemes are symmetric,
which means that either the customer must reveal her private key to the Maintenance, Repair
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and Overhaul provider (MRO) or the MRO must reveal the plaintext of the decision tree to the
customer. Thus, a second building block was formulated: secure computation for enforcing MRO
privacy while preserving customer privacy. From an architectural perspective, our prototype for
search over encrypted data in a cloud architecture utilizes a Client Server Model and is integrated
into a relational SQL database. Demo access is provided via a central web front-end. Within
ESCUDO-CLOUD Use Case 2 has the objective to formulate a state-of-the-art Cloud solution for
information sharing between business who transition to the Cloud. We see the presented prototype
as an important milestone for enabling significantly more secure information sharing between
multiple parties without requiring business developers to have much cryptographic knowledge.
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3. Use Case 3: Federated Secure Cloud Storage

3.1 Background

3.1.1 Overview

The core responsibility of Use Case 3 is to ensure the confidentiality and integrity of the cus-
tomer’s data when they are outsourced to different Cloud services for storage. This security is
enforced by using client-controlled encryption approaches. In addition to this core responsibility,
the access and ease-of-use of the key management and access control features is also very relevant
to Use Case 3 security properties. The key challenge addressed by Use Case 3 here is to offer
key management and policy-based access control as a service through a Cloud service store. The
instance of a key management service and the access control service have to be tightly coupled for
each customer, which allows the customers to specify key release rules that are valid only under
specific conditions. The data owner, or the customer of the Cloud storage service, is in control of
the data encryption process and the data can be encrypted on different types of storage media on
multiple CSPs.

3.1.2 Context in ESCUDO-CLOUD

The main focus of this chapter is within Work Package 1 of ESCUDO-CLOUD, in describing the
solution developed in the context of Use Case 3. It describes the scope and granularity of some of
the main components of the solution, especially those related to offering data protection for block,
object and Big Data storage services on different Cloud platforms.

The main outcome of Use Case 3 is the design and development of the BT Data Protection
as a Service (DPaaS) solution, based on results from Work Package 4, which focuses on the de-
velopment of models and techniques that provide data security advantages to a user utilizing the
services of multiple Cloud platforms. This encompasses the encryption of data-at-rest described
in Task 4.3, with the goal to guarantee to the data owners that the confidentiality and integrity of
their data is adequately protected, especially ensuring interoperability with the storage services
offered by different IaaS providers.

3.1.3 Background on DPaaS

The core components of the DPaaS solution are the agents, tools and utilities providing the core
data encryption and decryption mechanisms, the access control service and the key management
service. The customers are able to use these services via a service store that integrates the data pro-
tection solution and its components with multiple independent CSPs. Therefore, the service store’s
orchestration capability is the central component of the data protection service. The purpose and
application of these components in Use Case 3 are summarized below.
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Key Management Service

The main purpose of the BT Key Management Service is to allow customers to generate, store
and manage their encryption keys and certificates securely. It is a centralized, high-availability
and standards-based key management solution. It is provisioned and managed via the BT Cloud
service store’s Service Orchestrator, which enables each customer to create isolated and compart-
mentalized key management domains, so that the customers can store and manage their keys used
in multiple Cloud platforms in a secure multi-tenant environment. More details of its features and
capabilities are available in [TZS17].

One of the core requirements of Use Case 3, and also in the broader context of ESCUDO-
CLOUD, is to empower end-users with maximum control of their data in the Cloud eco-system.
This is realized in Use Case 3 by the customer-based management of the cryptographic keys, so
that only the customers are able to access the their key store and only the customers are able to
authorize the release of their keys to trusted encryption agents. The BT service store and the
key management service administrators have no view or control of the customers’ keys and other
security credentials, even if the key management service is deployed on BT Cloud platform.

Access Control Service

The main purpose of the BT Access Control Service is to allow the customers to regulate access
to their encrypted data stored on multiple Cloud platforms through a policy based enforcement of
rich access control attributes. Thus, its core value is to give the customers the assurance that their
data remains protected from the untrusted or curious Cloud service providers. More details of its
features and capabilities are available in [TZS17].

In the context of Use Case 3, the Access Control Service enables the creation of a strong
separation of duties between privileged Cloud service administrators and data owners outsourcing
their data on these Cloud platforms. When the data owners or authorized users want to access their
data, the Access Control Service lets them achieve this seamlessly by releasing the correct keys to
the trusted encryption agents or gateways.

Data Encryption Agents

The main purpose of the BT Data Encryption Agents is to offer capabilities for data-at-rest en-
cryption of sensitive data stored on different types of Cloud storage services, as well as enforce
privileged user access control on that data. The agents can encrypt and protect data residing in
physical, virtualized, object, and big data storage environments. More details of their features and
capabilities are available in [TZS17].

One of the core requirements of Use Case 3 is that the customers should be able to cache their
keys on trusted virtual machines or gateways in order to outsource or improve performance of the
encryption and decryption process. The BT Data Encryption Agents are the components that are
considered trustworthy in the scope of Use Case 3 as they are provisioned and deployed by the BT
Service Orchestrator in a secure process on customer’s Cloud hosted virtual machines.

Service Orchestrator

The main purpose of the BT service store’s Service Orchestrator is to provision the data protection
service to the customers and manage its life-cycle. Each customer gets a compartmentalized access
to the data protection service, and is able to define the access control and key release policies via
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the service store or the key management service interface and associate keys with those policies.
The service store also has the ability to install and configure the data encryption agents on virtual
machines and gateways on different supported Cloud platforms.

3.2 Solution

The DPaaS solution allows BT customers to protect and control their confidential and sensitive
information, with a user-friendly interface. Customers are able to store their data on multiple
Cloud vendors and platforms, and are able to manage the security related aspects of their stored
data via the federated protection service. Only the customers (or a trusted third party designated
by the customers) have the access and control of the cryptographic keys, giving the customers the
freedom to decrypt data on-demand and in real-time.

The main challenge being addressed by this solution is the federated security and management
of data that is hosted on different types of third party storage services, for example in the form
of block/file-system storage, data backups, or databases. This problem is further complicated in
the Cloud computing environment as data can be replicated and moved automatically to cater for
the scalability and reliability needs of the CSPs’ customers, thus increasing the risk of a secu-
rity compromise. In addition to the data security concerns, most customers also have to abide
by their company’s data protection policies and governmental regulatory compliance (e.g., FIPS
[NIS01], HIPAA [HIP03], HITECH [Blu10], Sarbanes-Oxley [CDL08], PCI DSS [MR08] and
GDPR [Man13] etc.).

3.2.1 Functionality and goals

The DPaaS solution is designed around the core functional requirements of a multi-tenant cus-
tomer scenario that aims to protect different types of data assets on multiple Cloud storage services.
The main component that addresses the administration and management of multiple tenants/cus-
tomers, multiple Cloud platforms and multiple Cloud storage services is the Service Orchestrator
component described in the previous section. This is the central managerial component of the BT
Service Store that is used to provision all the DPaaS capabilities to the BT customers, as shown
in Figure 3.1. Each customer gets a compartmentalized access to the service store and the data
protection service, as discussed in the previous section, and is able to define the access control and
key release policies via the service store or the Key Management Service (KMS) interface. The
BT Service Store also has the ability to install and configure the data encryption agents, plug-ins
and gateways on virtual machines on different supported Cloud platforms.

The main benefit of this design is that a centrally managed data protection service is used
to federate the disparity of different Cloud storage services on multiple Cloud platforms. In
ESCUDO-CLOUD Use Case 3, as depicted in Figure 3.1, we focus on three different storage
mediums, which are commonly requested by BT customers, to store and process data on current
Cloud platforms. We manage this diversity of storage technologies as three different branches or
three sub-use cases, which are block, object and Big Data storage. The core technical use case is
to offer data protection as a service in a multi-Cloud environment to BT customers, whereas the
service store provides the interface for the customers of the DPaaS to access and manage these
storage services. As a result of this structure, the sub-use cases will inherit a common encryption,
key management and access control system, but will have different abstractions and interfaces to
cater for the provisioning, management and operation of underlying storage mediums. The archi-
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Figure 3.1: High level view of the DPaaS solution design

Figure 3.2: Architecture of the block storage encryption service component of the DPaaS solution

tectural and implementation details of these three sub-use cases will be described in the following
sections.

3.2.2 Block Storage Encryption

Architecture

The architecture for the block storage encryption component of the DPaaS comprises of three main
modules, and is shown in Figure 3.2.

The first module is the BT Service Store which is used to provision and manage the life-cycle
of the component’s service to the customers or tenants. Each tenant gets a compartmentalized
view of the service store and the data protection service, as discussed in the previous section (3.1).
The BT Service Store also has the ability to install and configure the data encryption agents on
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Figure 3.3: Implementation reference of the block storage encryption service prototype

virtual machines on different supported Cloud platforms. These agents are stored in a software
repository on the BT Service Store.

The second module is the Data Protection Manager, which enables the customers to define the
access control and key release policies via the BT Service Store or its own Web/REST interface.
The Data Protection Manager also contains secure vaults where the customers can import, export
and manage their encryption keys and access control policies. The Data Protection Manager is
able to communicate with the data encryption agents running on the virtual machines on different
Cloud platforms over secure communication channels like TLS.

The third, and the last module, is the data encryption agent that is provisioned on the target
virtual machine by the BT Service Store’s Service Orchestrator (SO). After successful provision-
ing, the agents on the virtual machines use PKI-based authentication to identify themselves to the
Key Management Service which is being managed by the Data Protection Manager module. If
the agent successfully passes the authentication phase, the Key Management Service issues the
keys necessary to encrypt the files and data volumes present on the block storage attached with
the virtual machine. After the completion of the encryption process, the access to the protected
files and volumes is enforced by the agent as well. Upon receiving a data access request, the agent
checks the Access Control Service for the policy associated with the protected file or volume. The
agent then submits an encryption key release request to the Key Management Service if the access
request is approved by the Access Control Service. Once the Key Management Service issues the
encryption key, the agent can use the key to decrypt the data requested.

Implementation

The reference implementation design of the block storage encryption component of DPaaS is
shown in Figure 3.3. It consists of four main components: BT Service Orchestrator, Access Con-
trol Service, Key Management Service and Data Encryption Agents. The BT Service Orchestrator
itself is composed of the following sub-components.

Tenant Management (TM): The TM sub-component is in charge of managing customers reg-
istering to use the data protection service. In addition, it maintains information of the users’ Cloud
platforms and security solutions that can be embedded in the data protection service.

Cloud Platform Management (CPM): To support a multi-cloud environment, this sub-component
provides an interface consisting of APIs for communications with the supported cloud platforms.
For each cloud platform the framework supports, a cloud management plug-in is implemented and
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attached to this sub-component. Among APIs defined in the interface, some of them are mandatory
while others are optional for implementation. For example, it is required to implement the APIs
that connect to the Cloud platform for virtual machine deployment and virtual machine termina-
tion because these operations are involved in the encryption agent installation and un-installation
actions.

Security Solution Management (SSM): Similar to the CPM sub-component, to support differ-
ent security solutions, the SSM sub-component defines an interface with APIs for communications
with the security solution servers and for each security solution the framework supports, a security
plug-in is needed. Basic APIs in this interface include access control policy definition and data
encryption/decryption requests.

As shown in Figure 3.3, while the TM sub-component interacts with both the CPM and the
SSM sub-components, the CPM and SSM sub-components are independent of each other. Besides,
even though the TM sub-component requires interaction with the CPM and SSM sub-components,
this interaction is loosely coupled. Basically, based on the registered information of the users
and depending on the specific requests of users, the TM sub-component will directly trigger the
corresponding plug-ins inside the CPM and SSM components. For example, if a user chooses
to protect data in a virtual machine deployed in the Amazon EC2 platform and she chooses to
employ a security solution from Trend Micro, the Amazon EC2 plug-in and Trend Micro plug-in
will be called by the TM sub-component. Next time, if the user chooses to protect data in a virtual
machine deployed in the CloudStack platform and he chooses to employ a security solution from
SafeNet, the CloudStack plug-in and SafeNet plug-in will be called by the TM sub-component.
This design provides the scalability for the framework to support several Cloud platforms and
security solutions.

The implementation is supported by four databases: the tenant database, the access control
policies database, the key store/vault, and the agent repository. Among these four databases, only
the first one, which is the tenant database, is located inside the BT Service Store framework. The
other three databases are situated outside the Service Store framework and have separate interfaces
for policy management and key management. In this way, fine-grained access control policies can
be defined and users can customize the policies via the external interfaces without going through
the Service Store framework. However, by having these three databases outside the Service Store
framework, we need to also define interfaces to connect them with the SSM sub-component. At
the moment, the SSM employs a simple REST interface to set-up default basic access control
policies for users and leave users the freedom to add-in or modify the policies later through the
external interfaces.

Customer Journey

In this section, a typical customer’s experience of interacting with the block encryption component
of DPaaS is showcased.

Set-up Phase

As a pre-requisite of the typical customer journey scenario, the BT Service Orchestrator needs to
be up and running. This is a one-time process and does not need to be repeated. The main steps
for setting up the BT Service Orchestrator, as performed by the BT Service Store administrator,
are:
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1. Provision a VM (can be either Windows or Linux)

2. Install Puppet server and Apache Tomcat on the VM

3. Configure the Puppet and Apache Tomcat servers

4. Deploy the Puppet configuration scripts on the Puppet server

5. Deploy the WAR file on the Apache Tomcat server

At this point, the BT Service Orchestrator is ready to deal with customer registrations. The
WAR file is deployed on the BT Service Orchestrator in /etc/puppet/java/btappcara folder.
A configuration file (dpm.configuration.properties) is used for submitting parameters to the
jar library. The file is a Java .properties file containing generic information on how to access the
Data Protection Manager with the correct information. It has to be configured correctly only once
during the deployment of the BT Service Orchestrator. Its template is as follows:

# Ac ce s s t o t h e Data P r o t e c t i o n Manager
dpm . a d d r e s s = ’ ’ < IP a d d r e s s o f t h e Data P r o t e c t i o n Manager > ’ ’
dpm .DNS= ’ ’ <DNS name of t h e Data P r o t e c t i o n Manager > ’ ’
dpm . p o r t = ’ ’ < P o r t number o f t h e Data P r o t e c t i o n Manager > ’ ’

# Ac ce s s t o t h e Web S e r v i c e which p r o v i d e s s u p p o r t f u n c t i o n a l i t i e s
# t o t h e Puppet s e r v e r
dpm . to mc a t . a d d r e s s = ’ ’ < IP a d d r e s s o f t h e t omc a t s e r v e r > ’ ’
dpm . to mc a t . p o r t = ’ ’ < P o r t o f t h e t omc a t s e r v e r > ’ ’

# C o n f i g u r a t i o n o f t h e Sys tem A d m i n i s t r a t o r , t h e a c c o u n t used t o
# c r e a t e and d e l e t e domains and u s e r s on DPM
dpm . l o g i n . name= ’ ’ < Login name of t h e System A d m i n i s t r a t o r > ’ ’

# C o n f i g u a r t i o n f o r t h e d e f a u l t s y m m e t r i c key c r e a t e d f o r t h e
# e n c r y p t i o n
dpm . symmetr icKey . a l g o = ’ ’AES−128 | | AES−256 | | 3DES’ ’
dpm . symmetr icKey . name= ’ ’ <Name of t h e key ( can be empty ) > ’ ’
dpm . symmetr icKey . type = ’ ’ [ S t o r e d O n S e r v e r | | CachedOnHost ] ’ ’

# P o l i c y used f o r t h e re−k e y i n g phase ; t h i s p o l i c y i s a p p l i e d when a new
# Guard P o i n t i s d e f i n e d , t h e e n f o r c i n g o f t h i s p o l i c y a l l o w s f o r t h e
# e n c r y p t i o n o f any c o n t e n t a l r e a d y e x i s t i n g i n t h e f o l d e r b e f o r e t h e
# c r e a t i o n o f t h e GP i t s e l f .
os . r e k e y i n g . p o l i c y . f i l e = ’ ’ < Pa th t o t h e r e k e y i n g p o l i c y XML> ’ ’
os . r e k e y i n g . p o l i c y . name= ’ ’ <Name of t h e r e k e y i n g p o l i c y > ’ ’

# P o l i c i e s used f o r t h e E n c r y p t i o n o f t h e GP, t h i s p o l i c y i s
# a u t o m a t i c a l l y r e p l a c e d i n t h e Guard P o i n t d u r i n g t h e Guard P o i n t
# p r o v i s i o n i n g . At t h e moment t h e r e are 2 d i f f e r e n t p o l i c i e s f o r
# Windows and L inux .
windows . e n c r y p t i o n . p o l i c y . name= ’ ’ < Pa th t o t h e e n c r y p t i o n p o l i c y XML> ’ ’
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# l i n u x . e n c r y p t i o n . p o l i c y . name=’ ’<>’’
windows . e n c r y p t i o n . p o l i c y . f i l e = ’ ’ <Name of t h e e n c r y p t i o n p o l i c y > ’ ’
# l i n u x . e n c r y p t i o n . p o l i c y . f i l e =’ ’<>’’

# P o l i c i e s used f o r t h e E n c r y p t i o n o f t h e GP, t h i s p o l i c y i s r e p l a c e d
# i n t h e Guard P o i n t d u r i n g t h e Volume / Guard P o i n t de−p r o v i s i o n i n g .
# At t h e moment t h e r e are 2 d i f f e r e n t p o l i c i e s f o r Windows and Linux .
windows . d e c r y p t i o n . p o l i c y . f i l e = ’ ’ < Pa th t o t h e d e c r y p t i o n p o l i c y XML> ’ ’
# l i n u x . d e c r y p t i o n . p o l i c y . f i l e =’ ’<>’’
windows . d e c r y p t i o n . p o l i c y . name= ’ ’ <Name of t h e d e c r y p t i o n p o l i c y > ’ ’
# l i n u x . d e c r y p t i o n . p o l i c y . name=’ ’<>’’

Operation Phase

A typical customer’s lifecycle, in the context of this solution and use case scenario, consists of the
following steps:

1. Account registration

2. VM provisioning

3. Guard point1 creation

4. Guard point de-provisioning

5. VM de-provisioning

6. Account removal

These six steps are explained in more detail below.

1. Account registration: The main actions undertaken by the BT Service Orchestrator in this
step are below.

(a) Create a new domain on the Data Protection Manager for the customer.

(b) Create a new admin account for the customer on the new domain.

(c) Create three default policies for the domain:

• Encryption re-key policy: To encrypt existing data in guard points.

• Default Guard point policy: To protect data in guard points.

• Decryption re-key policy: To decrypt data in guard points.

2. VM provisioning: The main actions undertaken by the BT Service Orchestrator in this step
are below.

(a) Provision a VM (with pre-installed Puppet agent) on a Cloud platform, and attach one
or more block storage devices to it.

(b) Create a configuration file for the VM on the Puppet server.

1BT refers to a file, folder or block device (e.g., /dev/sda), which is to be protected by encryption and access control,
as a Guard point
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(c) Register the VM with the Puppet server and the Data Protection Manager.

(d) After the VM is registered with Puppet, the puppet agent will perform the following
actions at the next heartbeat:

• Install Python.

• Download and install appropriate data encryption agent.

• Restart the VM (only in case of Windows).

• Register the data encryption agent with the Data Protection Manager.

3. Guard point creation: The main actions undertaken by the BT Service Orchestrator in this
step are below.

(a) Create a guard point with encryption re-key policy.

(b) Update the configuration file for the VM at the Puppet server.

(c) At the next heartbeat, the Puppet agent will download the updated configuration file to
perform the following actions:

• Execute the dataXform operation to re-encrypt any existing data in the guard
point.

• Call an Access Control Service API that applies the default access control policy
associated with this customer.

4. Guard point de-provisioning: The main actions undertaken by the BT Service Orchestrator
in this step are below.

(a) Remove the existing access control policy from the guard point.

(b) Create a new guard point with the Decryption re-key policy.

(c) Update the configuration file for the VM on the Puppet server.

(d) At the next heartbeat, the Puppet agent will download the updated configuration file to
perform the following actions:

• Execute the dataXform operation to decrypt any existing data in the guard point.

• Remove the guard point created in Step 2.

5. VM de-provisioning: The main actions undertaken by the BT Service Orchestrator in this
step are below.

(a) Un-register the VM from the customer’s Data Protection Manager domain.

(b) Update the configuration file for the VM on the Puppet server.

(c) At the next heartbeat, the Puppet agent will download the updated configuration file to
perform the following actions:

• Un-install the data encryption agent from the VM.

• Restart the VM (only in case of Windows).

6. Account removal: The main actions undertaken by the BT Service Orchestrator in this step
are below.

(a) Remove all guard points and un-register all VMs from the customer’s Data Protection
Manager domain.
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Figure 3.4: Architecture of the object storage encryption service component of the DPaaS solution

(b) Remove all access control policies and keys from the domain.

(c) Remove all user accounts of the customer from the domain.

(d) Remove the domain from the Data Protection Manager.

3.2.3 Object Storage Encryption

Architecture

The architecture for the object storage encryption component of the DPaaS comprises of one main
module, i.e., the BT Cloud Encryption Gateway, and is shown in Figure 3.4.

The gateway solution relies on the Data Protection Manager, described in the previous sec-
tion, for encryption key and policy management. As a result, customers never need to relinquish
control of cryptographic keys to the service provider and data never leaves the virtual machines
unencrypted or unaccounted.

The main role of the BT Cloud Encryption Gateway is to act as a proxy that can be used to
intercept objects being sent to the object storage services and transparently encrypt them during
transfer. The proxy can be deployed as a gateway in either the customers’ premises as a forward
proxy or in the Cloud environment as a reverse proxy. In addition to the proxy, the Cloud En-
cryption Gateway also implements a basic key-value database to store and track the state of the
objects being encrypted in the gateway, connectors for the supported Cloud object storage services
(S3, Caringo etc.), and the data encryption agent performing the object encryption and decryption
operations.

Implementation

The reference implementation design of the object storage encryption service of DPaaS is shown
in Figure 3.5. It uses most of the same components as the implementation described in the previous
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Figure 3.5: Implementation reference of the object storage encryption service prototype

section (3.1). The only main addition in this case is the BT Cloud Encryption Gateway. The Cloud
Encryption Gateway can be deployed in either the customers’ premises as a forward proxy or in
the cloud environment as a reverse proxy, and implements the following main functions:

The main feature of the Cloud Encryption Gateway is to act as the proxy server for all the
object storage requests and responses coming to and from the S3 and Caringo object storage
services. This proxy server intercepts these objects being sent to the object storage services and
transparently encrypts them during the caching phase. In addition to the basic proxy functionality,
the Cloud Encryption Gateway also implements a basic key-value store using MongoDB to keep
track of the state of the objects being encrypted in the gateway.

Similar to the CPM sub-component described in the block storage encryption implementation,
in the object storage encryption solution makes use of different object storage connectors that
provide the interfaces to interact with different Cloud object storage services. So far, it makes
use of Amazon S3 and Caringo Swarm connectors. The customers provide the appropriate object
services’ credentials to these connectors after the Cloud Encryption Gateway has been set-up and
configured by the Service Store. The proxy server uses these connectors to upload and download
objects from the respective object store.

3.2.4 Big Data Encryption

Architecture

The architecture for the HDFS encryption component of the DPaaS comprises of three main mod-
ules, and is shown in Figure 3.6.

The first module is the BT Service Store that is used to provision and manage the life-cycle of
the HDFS cluster to the customers or tenants, usually through a Hadoop cluster management and
monitoring service like Apache Ambari [AMB17]. Each tenant gets a compartmentalized view
of the Service Store and the Data Protection service. The BT Service Store also has the ability
to install and configure the Data Encryption Agents on HDFS NameNode and DataNodes, on
different supported Cloud platforms. These agents are stored in a software repository on the BT
Service Store.

The second module is the Data Protection Manager, which enables the customers to define the
access control and key release policies via the BT Service Store or its own Web/REST interface.
The Data Protection Manager also contains secure vaults where the customers can import, export
and manage their encryption keys and access control policies. The Data Protection Manager is
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Figure 3.6: Architecture of the HDFS encryption component of the DPaaS solution

able to communicate with the Data Encryption Agents running on the NameNode and DataNodes
of the customer’s HDFS cluster, over secure communication channels like SSL/TLS.

The third and last module are the Data Encryption agents that are provisioned on the target
virtual machines, which are the hosts of the customer’s HDFS cluster, by the BT Service Store’s
SO. After successful provisioning, the agents on the HDFS NameNode and DataNodes use PKI-
based authentication mechanism to identify and authenticate themselves with the KMS, which
is being managed by the Data Protection Manager module. If the agents successfully pass the
authentication phase, the KMS issues them the DEKs necessary for encrypting the data blocks
stored on the HDFS storage. After the completion of the encryption process, the access to the
protected data blocks is enforced by these agents as well. Upon receiving a HDFS data access
request, the agents check the Access Control Service for the policy associated with the protected
HDFS Guard point. If the access request is approved by the Access Control Service, the data
encryption agents submit an encryption key release request to the KMS. Once the KMS issues the
DEK, the agents can use it to decrypt the HDFS data blocks requested by the end-user.

Implementation

The reference implementation design of the Big Data encryption service of DPaaS is shown in
Figure 3.7. It uses most of the same components as the implementation described in the pre-
vious section. As in the block storage encryption implementation, the CPM sub-component is
responsible for launching and configuring the base VMs, which will constitute the cluster nodes
of the HDFS cluster, on the selected Cloud platform. It also provisions and configures the Data
Encryption Agents on all the cluster nodes, be they either NameNodes or DataNodes.

The main difference between this reference implementation and the block storage encryption
implementation is the use of the Apache Ambari service to deploy and configure relevant Hadoop
services on the cluster, as chosen by the customer organization. The Ambari service is also used to
perform part of the encryption agents’ configuration so that they are able to understand the HDFS
virtualisation and perform encryption/decryption and policy enforcement operations at the HDFS
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Figure 3.7: Implementation reference of the Big Data encryption service prototype

level.
Similar to the CPM sub-component described in the object storage encryption implementation,

in the Big Data encryption solution we make use of the HDFS Plug-in that provides the capability
and interface to define encryption policies for the HDFS files and directories stored in HDFS
cluster’s DataNodes. Due to this component, the customers can even selectively encrypt HDFS
folders with different keys, providing multi-tenancy support. Additionally, the customers can also
define user-based access control rules for HDFS files in their HDFS cluster.

3.3 Summary

CSPs offer storage services of different types to their customers. However, they maybe also of-
fer heterogeneous and non-standard APIs, specialized functions, and security functionalities for
the consumption of their users. Therefore, ESCUDO-CLOUD Use Case 3 offers a solution that
provides data protection services to its customers for Cloud-based block, object and Big Data
storage services, and which can work seamlessly across multiple Cloud platforms. Customers
retain control of the key management, thus have more flexibility in meeting regulatory and pri-
vacy requirements and ensuring data confidentiality and secure access. Thus, BT Data Protection
as a Service provides full automation of data protection services to its customers as a complete
life-cycle, from data encryption to data decryption.
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4. Use Case 4: Elastic Cloud Service Provider

4.1 Background

4.1.1 Overview

Use Case 4, as a subset of the overall ESCUDO-CLOUD use case strategy, is tasked with iden-
tifying and developing mechanisms for the protection of user data where the host i.e., the Cloud
Service Provider (CSP) is considered untrusted. The provider is not necessarily malicious, but may
be vulnerable to accidental exposure of sensitive data (or cryptographic keys), or attacks from ma-
licious parties. Therefore, the approach pursued in developing the Use Case 4 architecture was
to remove dependency on the CSP to implement the security mechanisms. Instead, the onus is
on data owner to implement data protection mechanisms on the client-side, thus preventing the
provider from affecting the security level of the data.

The architecture and prototype were jointly defined and developed by WT and EMC. The
architecture comprises of a newly-developed middleware component orchestrating a number of
open-source and proprietary services resulting in an elastic Cloud storage service that can adjust
its capacity in a multi-Cloud environment without compromising on the security of the data. With
the ESCUDO-CLOUD middleware, users have secure access to their data hosted by the Cloud
provider, and can manage the security and storage configurations enforced on their data. Access
to the service is possible via a web browser or an agent installed in the user devices. The service
is compatible with public Cloud services such as AWS S3 and Google Drive, as well as hybrid
Cloud solutions, such as Dell EMC’s Elastic Cloud Storage (ECS) platform. Implementing this
ESCUDO-CLOUD architecture, users will be able to leverage Cloud services in a more cost ef-
fective way, with a higher level of security, access control and assurance.

4.1.2 Context in ESCUDO-CLOUD

ESCUDO-CLOUD project considers across the four use cases four dimensions for secure data
sharing in the Cloud. In tandem with this, the trust boundaries of each use case were clearly defined
in order to appropriately target different aspects of those dimensions in each use case. Figure 4.1
illustrates the trust boundaries for UC4, with the data owner and authorized users identified as
the only trusted entities. Data stored in across the multiple Cloud providers, is protected (i.e.
encrypted) by the ESCUDO-CLOUD solution with only the trusted entities able to access the data
unencrypted.

UC4 has provided the platform for the evaluation of several of the novel mechanisms and
advances in data protection techniques that have resulted from the technical work packages (WP2-
4). The Shuffle Index reported initially in D4.2 was implemented and tested on the ECS component
of UC4, with the results documented in D4.3. The concept of over-encryption was first introduced
in D3.1, with an initial implementation for policy evolution analysed in D2.2. The concept of
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Figure 4.1: Overview of the Use Case 4 Trust Boundaries

over encryption and the flexibility of the mechanism demonstrated in D2.2 proved its potential
for ECS, making use of the native encryption and key management capabilities. Following the
model of implementing Base Encryption Layer (BEL) and Surface Encryption Layer (SEL) for
access control, the architecture can be adapted such that the existing client-side encryption is the
BEL, while ECS encryption can be applied as the SEL enabling a convenient mechanism for the
revocation of access rights to users.

4.1.3 UC4: Core Technologies and Concepts

Elastic Cloud

Cloud computing was a massive disruptor in how the IT industry thought about their infrastructure
and deployment models for services and applications. The impacts of this are still being felt across
the industry as Cloud continues to evolve and new applications in areas such as IoT, Big Data, Edge
Compute and 5G come into focus. Cloud was initially viewed as a low cost and scalable solution
for IT infrastructure. However, studies have shown that Cloud may not be the best deployment
model for some applications. The impact of latency, and the cost to move data (typically charge
per transaction), combined with the reduce cost of establishing in-house storage facilities (due to
lower cost of capacity on new drive technologies) has contributed to this evolution. Cloud still
has a major role to play in IT infrastructure, however it needs to be flexible in order to meet the
requirements of a wide array of use cases.

An elastic Cloud model offers flexibility and scalability, combining on-premises resources
with public (or private) Cloud provider to achieve a saving in the Total Cost of Ownership (TCO)
for the customer. UC4 addresses this aspect of a Cloud storage platform with the inclusion of
EMC’s Elastic Cloud Storage (ECS) platform (discussed in further detail in Section 4.3.2). Offer-
ing object storage capability, end user data can be stored more efficiently than traditional hierar-
chical tree structure file systems. This enables a private Cloud provider, offering elastic storage
resources, to scale up their on-site and off-site storage pools to meet demand. Crucially, due to the
data protection mechanisms implemented on the client, the data remains secure even if offloaded
to third party providers.
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Compliance in the Cloud

Finally, UC4 addressed the challenge for determining the compliance level of a provider, or chain
of providers, with the security requirements of the data owner. There are many frameworks avail-
able that tackle this issue, such as the CSA Cloud Control Matrix1 that was designed to provide
guidance for Cloud vendors and customers in assessing the security risk of a Cloud provider.
Another initiative by CSA is the Security, Trust and Assurance Registry (STAR)2 that offers cer-
tification to providers indicating the security level of a Cloud provider. Outside of CSA, the FP7
project SPECS3 proposed and developed a negotiation, enforcement, and monitoring platform
that integrated with the service providers to implement the specifics of an agreed Security SLA
between the provider and the customer. In contrast to the approach of CSA, the SPECS approach
offered real-time monitoring of security levels. The benefits of this approach are significant but
the ongoing technical integration costs as features and APIs are added, removed or modified for
Cloud services is a potential barrier for the adoption of such a service.

The approach taken in ESCUDO-CLOUD for UC4, as discussed in Section 4.5, is more in
line with that of the CSA. Using the RSA Archer tool for compliance checking4, a template for
a Cloud storage service was developed based on the use case requirements collected in D1.1.
Requirements were included from all four use cases, enabling the template to be used in a range
of configurations beyond those following the UC4 architecture. This template feeds into an online
questionnaire portal that maps provider features to the security metrics, offering Cloud customers
to assess the security posture of the provider.

4.2 Solution

The elastic Cloud solution developed by WT, integrating EMC’s ECS service to provide the exter-
nal Cloud storage infrastructure, aims to provide data protection in Cloud and multi-Cloud envi-
ronments which enables users to protect their data without any involvement of the Cloud Provider
on the fulfillment of data protection mechanisms. This solution enables end users to have control
over their data while providing flexibility of the services provided by CSPs.

Use case 4 will promote trust in an elastic Cloud solution by the implementation of client-
side encryption for sensitive data. Due to the inherent risks to data stored and processed in the
Cloud, such as the threat to keys actively used in the Cloud, encryption at the source is a vital
mechanism to be included as part of an organization’s security strategy. Trust in the Cloud requires
accountability and transparency from the CSP, enabling data owners to have visibility of how their
data is managed. Through encryption and proper key management, data owners can retain their
keys protecting their data stored in the Cloud. In this way, the data owner has the ultimate control
over how their data are protected in the Cloud, how it is accessed and who may access it. Thus, this
approach also facilitates the inherent secure usage of third party CSPs, so that a CSP can employ
Cloud bursting techniques to expand the resource capacity of the service it is providing without
additional risks to the data.

The objective of techniques or tools provided for Use Case 4 is to offer certifiable secure data
management in the Cloud by including the following main features:

1https://cloudsecurityalliance.org/group/cloud-controls-matrix/
2https://cloudsecurityalliance.org/star/
3http://specs-project.eu/
4https://www.rsa.com/en-us/products/governance-risk-and-compliance
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Figure 4.2: Elastic secure cloud storage architecture

• Encryption of the communication channel between the client and the CSP,

• Encryption features for file storage in the cloud,

• Access management by establishing and defining clear roles,

• Enabling file access through a web portal or agent.

4.3 Use Case 4 Architecture

The client-side encryption model adopted in Use Case 4 places the trust boundary as close as
possible to the data owner. Figure 4.2 shows the general architecture used for the implementation
of the Elastic Secure Cloud Solution. There exist three stakeholders in this scenario, namely: the
end user (i.e. the data owner), the agent and the CSP. Communication between these actors is
always the same: the end user will be able to manage their files hosted in the Cloud through the
ESCUDO-CLOUD middleware. By using this middleware, the data is protected by client-side
encryption, and only the end user can access the management of data protection mechanisms. In
this architecture, the CSP is not involved in the encryption/decryption process, nor does it have
access to the key material. Once the user is logged in via the EC middleware, encryption is
performed transparently through the agent allowing the end users to access their data seamlessly,
without any additional software requirements.

4.3.1 Core Functional Blocks

The core functional blocks of the architecture are the ESCUDO-CLOUD middleware, and the
web portal. The ESCUDO-CLOUD middleware is the core module and is in charge of the system
control. This module includes:

• Vault framework5: secures, stores, and tightly controls access to tokens, passwords, cer-
tificates, API keys, and other secrets in modern computing. Vault handles leasing, key revo-

5https://vaultproject.io
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cation, key rolling, and auditing. Vault presents a unified API to access multiple backends:
HSMs, AWS IAM, SQL databases, raw key/value, and more.

• Owncloud platform6: is a self-hosted file sync and share server. It provides access to your
data through a web interface, sync clients or WebDAV while providing a platform to view,
sync and share across devices easily – all under your control. Owncloud’s open architecture
is extensible via a simple but powerful API for applications and plugins and it works with
any storage:

– Local storage: CSP storage cluster integrated with OwnCloud platform.

– External storage: Owncloud will be integrated with external system in accordance with
the elastic cloud requirement.

In the Use Case 4 prototype, access can be done through a web portal (agentless) or via a
pre-installed agent (desktop or mobile application). In both cases, access is done via HTTP API
allowing the communication interface with ESCUDO-CLOUD Middleware enabling session man-
agement (including registration, login by authentication, user session and logout) and file manage-
ment (upload, download, share and delete).

4.3.2 ECS Integration

Complementary to the core functional blocks are the storage providers offering elastic Cloud stor-
age capabilities that enable further security, geographic diversity, and data replication and redun-
dancy. The explosion of data that is being experienced by IT organizations in recent years has
led to increased adoption of public Cloud storage platforms such as AWS S3. While these plat-
forms offer significant economic advantages over traditional storage solutions, they introduce new
challenges in the areas of data residency and impact that has on compliance with local laws and
regulations.

The integration of ECS into the Use Case 4 architecture enables the primary Cloud provider
(hosting the ESCUDO-CLOUD middleware) free up their primary storage (therefore reducing
costs) while offloading inactive data to lower cost storage offsite. This is a particularly useful
configuration for smaller private CSPs that require the flexibility to burst into public Cloud to meet
storage requirements. Designed to leverage industry standard (lower cost) hardware to support
flexible deployment models (including a software only solution), the approach is also more cost-
effective than public Cloud services, with up to 48% lower Total Cost of Ownership (TCO)7.

The technical integration of ECS required the configuration of three ECS nodes (CSPs) to
demonstrate how data can be distributed across a multi-provider network of CSPs. Control of
the data flow is managed through Owncloud which issues commands to the ECS control plane
(running on a Virtual Machine (VM)) via either a REST API or S3. Compatibility with these pre-
existing communications protocols reduces the integration complexity and therefore lowers any
barriers to adoption for private Cloud providers.

6https://owncloud.org
7Enterprise Strategy Group: Dell EMC Elastic Cloud Storage, Economic Benefit Analysis of On-premises Object

Storage Versus Public Cloud, December 2016
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4.3.3 User Experience

The current version of the web app presents the registration, login and confirmation user views.
Once logged in users can view files, and create, navigate and modify folders. From the secu-
rity perspective, users are also able to encrypt and upload, and decrypt and download files (See
Figure 4.3 for details on these actions).

The user view shows user information, the list of devices the user has logged in to, and the
list of configured external storage. This view allows the user to change basic information and
security controls (e.g., password), manage devices in order enable or revoke device access. The
management of external storage at this stage is not automatic, the administrator via back-end
application manage the external storage (mount, associate to user). Use Case 4 prototype offers
four options for the storage, one local and three external (Google drive, Dropbox and ECS from
Dell-EMC). An interesting feature for future development would be to automate the selection of
external storage taking into account different criteria as to economic aspect and SLA compliance.
This work could also lead to the implementation the functionality to blacklist providers and give
the user access to the selection of external storage.

As an additional security measure, only a limited number of failed attempts to the login process
is allowed. If this limit is reached, the user account is locked and only an administrator can unlock
it.

4.3.4 Data Structure

The data structure enabling the encrypted file storage for the Use Case 4 core solutions is described
in Figure 4.4.

people and user are related to the end user; people is representing the client and user is only
using for the back-end application and contains the useful data for the administrator user. devicesr
contains the information of all user devices, which could be laptop, smartphone, tablets, etc., used
to access the front-end application mainly encompassing session management and files manage-
ment. efiles and sources are related to the encrypted stored files and are mainly used for the index
of files and their synchronization. Another entity mounts (external storage) is used but at this stage
only from the back-end by the administrator (not depicted in this figure); it is not accessible at this
stage by the user.

4.3.5 REST API

The current version of the API implementation for Use Case 4 enables:

• User management (used to create, update users and retrieve user information),

• File management (used to operate with files, download/upload from/to File Storage),

• Secret management (used to store and retrieve encryption keys from Secret Storage),

• Device management (used to store and delete the devices from which user has logged in),

• Mount management (used to create and remove external files storage mount points, as
Google Drive and Dropbox using OAuth). WT exploits the username (API: NAMESPACE
of url) in order to perform the new user registration and the authentication by means of JWT
based application.
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Figure 4.3: Use Case 4 user actions sequence

WT has also implemented a web interface (back-end application) for the administration of
clients on the ESCUDO-CLOUD middleware. This is accessible only to users with administrative
privileges. From this interface it is possible to perform operations on client profiles, such as
confirm registered clients and lock or unlock clients. For file management, the ESCUDO-CLOUD
middleware maintains a synchronized index of every file tree for each user has in file storage. This
index also speeds-up file operations from the client in order to reach a good response time of the
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Figure 4.4: Use Case 4 data structure

application, a technical challenge for encryption process.

4.3.6 Architecture Summary

By implementing Use Case 4 elastic Cloud architecture, a CSP can offer cost-effective file storage
configurations to suit the requirements of the end users. Data are stored across local and external
storage resources in a dynamic way that enables the primary provider to extend the storage capac-
ity on demand. This is ideally suited to private CSP that wish to avail of Cloud bursting mecha-
nisms in periods of high load, or as a cost-effective approach for storing inactive data. Through
client-side encryption and third party key management (accessed only via the ESCUDO-CLOUD
middleware) the data remains secure as it moves within and across provider boundaries. Addi-
tional security mechanisms (i.e. encryption) implemented in ECS provides an additional layer of
security, applying over-encryption to the data.

The prototype of the architecture is compatible with multiple providers such as Google Drive,
Dropbox and EMC-ECS, therefore achieving the objective of implementing an elastic service.
The technical objectives of the file storage are to store physically encrypted files and to pro-
vide an API to configure externally files store and an API to manage a back-up. The related
implementation mainly encompasses the configuration and the deployment of Owncloud server
(https://owncloud.org/), and the API endpoint developed to create new external storage. Another
core objective is to store keys and sensitive user data in a secure way, i.e. in a secret storage.
This was achieved through the configuration and deployment of Vault (https://vaultproject.io) and
Consul (https://www.consul.io/) already shortly introduced in D1.4.
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Figure 4.5: Security Features

This section has provided a technical overview of the core functional components of the Use
Case 4 architecture with some discussion of the security mechanisms. The following section will
explore the tools used for data protection in more detail.

4.4 Tools for Data Protection

While the adoption of the Cloud places a wealth of cost effective resources and services within
reach of users and organizations, one also needs to assess the impact of the Cloud on trust on se-
curity. This requires the characterization of the security, privacy and dependability levels available
to the user. The diversity of Cloud providers and the range of measurable dimensions (mainly se-
curity, privacy, and dependability) describing the trust score offered by each provider complicates
the users’ task in selecting the provider that can best fulfill their security requirements. Figure 4.5
highlights just some of the core security features available through ESCUDO-CLOUD within the
context of Use Case 4. The following sections will provide further detail on how these features
have been implemented in the Use Case 4 architecture.

4.4.1 Client-side Encryption

In the Use Case 4 architecture, the primary CSP has the capability to select and use different Cloud
storage services. This is done in a transparent way so that it does not impact the user experience
of the service. Client-side encryption provides a uniform level of security that is independent of
the where the data ultimately will reside, whether it remains local to the primary provider or if it
is offloaded to an external provider. While the other ESCUDO-CLOUD use cases have defined
their own trust boundaries that dictate their file encryption/decryption approaches, Use Case 4 has
followed the client-side approach where it is the client’s responsibility to encrypt/decrypt files,
and to generate the keys used for encryption/decryption. Figure 4.6 and Figure 4.7 describe the
sequence diagrams for the encryption and decryption processes respectively. Further details on this
mechanism were reported in D2.1. The technologies used for data encryption in Use Case 4 are
PBKDF2-SHA512, AES-256-GCM, crypto JS and the SJCL Stanford Javascript crypto Library 8

(more details in the section 5.4.2. Vault with Consul backend are used for the storage of encrypted
keys.

4.4.2 Key Management

In Use Case 4 prototype, user keys (i.e. master key, derived private key and public key) are
generated and encrypted, and then sent to the server and stored in secret storage (i.e. the Vault

8http://bitwiseshiftleft.github.io/sjcl/
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Figure 4.6: Use Case 4 encryption sequence

component). Key management mainly encompasses the generation of a master key and an asym-
metric keys pair (i.e the public and private key components of a key pair) for each user and from
the private key a derived private key that is an encrypted version of the private key. When a user
logs into the client, a new master key to decrypt the private key is generated from the user pass-
word and the stored metadata (i.e. metadata of the password: hash, salt and iteration). A Data
Encryption Key (DEK) is used to encrypt and decrypt the file contents and when a user shares a
file, the client re-encrypts DEK with target user’s public key.

The user’s master key is created during her first login and it is tied to her password. At technical
level, the master key is generated by using Crypto JS on a validated password of the first login and
their metadata. The keys pair are generated by using elGamal combined with a random key of
256bits. And the derived private key is generated by using SJCL (Stanford Javascript Crypto
Library) on the private key of the pair combined with the master key. The user keys is stored in
the secret storage (a strategic architectural component of Use Case 4 enabling storing secrets).

4.4.3 Shuffle Index

The problem of protecting data confidentiality has been widely addressed by the research commu-
nity (e.g., [DFS12]). However, protecting data confidentiality may not be sufficient. Indeed, by
observing accesses, a Cloud provider could infer sensitive information about the user performing
the access and the possibly sensitive content of the outsourced dataset. The distributed shuffle
index [DFP+15b] [BDF+17] strengthens the guarantees of access confidentiality provided by the
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Figure 4.7: Use Case 4 decryption sequence

Figure 4.8: Use Case 4 Shuffle Index implementation

shuffle index through the distribution of data among three Cloud providers. Figure 4.8 illustrates
the effect of the implementation on file access made to ECS (via Owncloud and the ESCUDO-
CLOUD middleware). Accessing a file results in the retrieval of that file from ECS while also
triggering an interation of the shuffle index, moving data across the three providers.

As part of the performance analysis of its implementation in D4.3, experimental results were
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obtained from the Use Case 4 architecture - specifically the ECS Cloud storage component that
enabled access to the shuffle index via multiple APIs (SWIFT, S3). Furthermore the solution
demonstrated that it offered performance comparable to public Cloud platforms that were previ-
ously evaluated against [BBB+17].

4.4.4 Over-Encryption

One of the prominent challenges facing the approach of client-side encryption adopted by Use
Case 4 is managing the overhead of user access to the data. Use Case 4 has already implemented
access control mechanisms that require users to authenticate themselves, therefore enabling the
service to verify their identity and determine if they are authorised to access the data. However, if
this were the only required security mechanism to protect data, then encryption would not be an
essential component of any data protection solution. This is essentially the scenario facing data
owners when users access to data is revoked. If the data is not re-encrypted, from the perspective
of the revoked users, it is plaintext data. Therefore, it is a recommended security practice to
re-encrypt data sets when updates to the Access Control List (ACL) are made.

This process of encryption implies a modification and redistribution of the encryption keys.
Use Case 4 places the most responsibility for encryption and the key management on the client.
Therefore, should a user have their access to a particular data set revoked, in order to maintain the
isolation of the encryption process from the CSP, the data set would need to be downloaded to the
client and decrypted with the old key, re-encrypted with a new key, and uploaded to the provider.
The key would also need to be uploaded back to the secret store on the provider so that it can be
requested by authorized clients. The overhead of this process is potentially costly depending on
the size of the dataset and the expected frequency of access policy modifications.

An alternative solution is over encryption. D2.2 evaluated this mechanism in three modes:
on the fly, on resource, and end to end [BDF+16a] [BDF+16b]. The results of this evaluation
determined that on the fly mode was the slowest and most computationally intense mode, but
offered faster policy updates as it is applied as data is requested. The on resource and end to end
modes on the other hand, provide faster response since they apply the Surface Encryption Layer
(SEL) only during the policy change requests. This also results in slower policy updates as the
update must be implemented across the entire data set. Assessing the applicability of the latter
two modes for ECS, on resource maps to the existing architecture and offers the desired protection
against revoked users. The Base Encryption Layer (BEL) applied at the client ensures that the data
remains protected from the Cloud provider. Figure 4.9 illustrates how over encryption on resource
mode is implemented.

4.5 Tools for Compliance Checking

When considering the empowerment of end users, the implementation of mechanisms for compli-
ance checking is critical for the establishment of a basic contract between the CSP and data owner.
The ability for a data owner to assess services against their requirements prior to acquiring that
service enables them to make an informed decision and compels the provider make a commitment
to the terms of the service they are offering.

The integration of a policy checking mechanism requires revisiting the use case architecture,
identifying the points of integration, proposing the deployment model of the compliance checking
tool, and specifying the relationships between it and the architectural components relevant to the
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Figure 4.9: Use Case 4 Over Encryption (On Resource Mode)

security metrics. In this way, a reference approach will be established making use of the security
metrics defined in D1.1 to evaluate policy compliance. This approach can be easily applied to the
other use cases through the development of policy templates that address their respective security
metrics.

4.5.1 RSA Archer

The Archer GRC platform is a commercial product produced by RSA, which is part of Dell Tech-
nologies. Governance, Risk and Compliance (GRC) are critical business functions within any
organization, and are particularly challenging for medium-size and enterprise companies, where
corporate information is spread between different departments and divisions. The Archer platform
enables organizations to build an efficient, collaborative enterprise governance, risk and compli-
ance program across IT, finance, operations and legal domains. It does this by providing a common
repository for GRC data and applying consistent policies across the organization.

Archer solutions can be used within an organization to: a) manage the lifecycle of an organi-
zations policies and procedures; b) optimize the compliance with industry regulations; c) visualize
and effectively communicate risks at all business levels; d) investigate and resolve cyber incidents;
e) business continuity, high availability and disaster recovery planning across the organization; and
f) manage internal risk audits.

Archer has a number of mechanisms to ingest data into its GRC repository. It provides: a)
REST interfaces that enable data to be pushed into Archer; b) SQL statements that enable Archer
to query external databases; c) surveys that allow third-party users to interface with Archer in a
controlled manner; d) bulk data uploads directly into the Archer repository; and e) custom inte-
gration with other RSA security products such as Netwitness for cyber security.

Archer has a large number of predefined corporate policies and procedures in domains such
as IT, finance, legal and operations. In addition to the predefined policies and procedures, Archer
provides tools that allow administrators to extend existing policies and procedures, or define new
ones. The policies and procedures are grouped into solutions that cover a general corporate do-
main; a solution is composed of applications that focus on specific aspects of a corporate domain.
Archer also provides a rich user interface, with many reporting and workflow features pre-built. It
is also possible for the administrator to extend the user interface with custom screens and work-
flows. For example, there is an Archer solution that covers IT policies and procedures, which has
an application that covers password security policy. An Archer administrator can alter the default
security policy to conform with the organizations security requirements, e.g., passwords must be
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Figure 4.10: Archer Risk Assessment Framework

8 characters or longer, and have at least a number, a lower case, and an upper case letter. New
IT systems can then be interrogated, using one of the ingest mechanisms listed above, to ensure
that they are compliant with the organization’s IT policies, and if not, a red flag is raised with the
relevant manager(s).

4.5.2 RSA Archer Integration

Figure 4.11 describes the high level component view of the Use Case 4 reference architecture that
has been prototyped. Here, RSA Archer 9 is introduced to the architecture, providing the tools for
policy checking against the virtual CSP and third party services. Note that the solution does not
aim to provide coverage of the client agent and web browser - only server side components are
checked for compliance with policy. As described in Section 4.5.1, Archer tackles the challenge of
policy compliance through the implementation of a self-assessment portal for evaluation of service
against requirements.

4.5.3 Use Case 4 Requirements and Policy Management

End users wishing to implement the reference architecture illustrated in Figure 4.11 face many
challenges when managing risks and compliance with the policies they set out. The pertinent data
that enables checks against defined policies are often stored in a decentralised manner, typically
across several documents that only represent the data at a specific point in time. This presents a
challenge in obtaining real-time data that feed into autonomous processes managing the service,
and triggering compliance alerts to the data owners.

Table 4.1 maps the requirements defined in D1.1 to the components identified in the architec-
ture in Figure 4.11. This is a complete set of the relevant requirements for Use Case 4.

9https://www.rsa.com/en-us/products/governance-risk-and-compliance
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Figure 4.11: Elastic cloud service provider architecture with policy checking

Requirement Reference Requirement Descrip-
tion

Covered by Component

REQ-UC4-AC-1 Access Control to the web
portal

Middleware (authentica-
tion framework)

REQ-UC4-AC-2 Save credentials Client; Vault;
REQ-UC4-AC-3 Access control to middle-

ware
Owncloud (through Mid-
dleware)

REQ-UC4-AC-4 Access to shared files Owncloud; ECS;
REQ-UC4-AC-5 Access grant by adminis-

trator for locked users
Middleware; ECS;

REQ-UC4-AC-6 Limit failed access at-
tempts

Middleware

REQ-UC4-SS-1 Manage Cloud storage us-
age/capacity

Owncloud; ECS;

REQ-UC4-SS-2 Access control to storage Middleware; Owncloud;
ECS

REQ-UC4-SS-3 Responsive elastic Cloud
storage

Owncloud; ECS;

REQ-UC4-SS-4 Comply with data protec-
tion directive

Middleware

REQ-UC4-SS-5 Data recovery control Owncloud (through mid-
dleware); ECS;

REQ-UC4-DE-1 User encrypts/decrypts
data control

Client; ECS;

REQ-UC4-DE-2 Encrypted data cloud stor-
age

Owncloud; ECS;
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REQ-UC4-DE-3 Ensure server synchro-
nization

Middleware

REQ-UC4-DE-4 Secure file download Client

Table 4.1: Use Case 4 requirements and their coverage by architectural components

The next step in implementing actual policy checking is to develop the policy templates for
Archer against which these requirements must be checked. These policies will then be used for
self-assessment data gather on the service. The following section will look at how those policies
are used in a self-assessment conducted by a provider so that data owners can compare offerings
from multiple CSPs.

4.5.4 Service Provider Assessment

Use Case 4 is particularly challenging from a security risk assessment perspective, as by definition
Use Case 4 implements an elastic cloud service involving multiple parties. The user connects
directly to the primary CSP, who, in turn, may subcontract the storage of the user’s data to one, or
more, secondary CSPs. Therefore, two entities may need to perform a security risk assessment, the
primary CSP and the user wishing to store their data. Even if the security assessment information is
held by an organization, it is often distributed between different departments and held in different
formats, such as databases, spreadsheets, paper forms and contracts. CSPs may change their
implementations from time to time, which may in turn change the security assessment. All these
factors mean that it can prove almost impossible to obtain a concise security assessment that is
maintained, and is up-to-date. For example, a secondary CSP may change its policy on the physical
location, and store the user’s data outside the EU, inadvertently breaking the user’s security policy.
Thus, it is important that an organization can collect the relevant CSP information on an ongoing
basis, ingest it into a common canonical form, and store it in a central repository as security
configuration metadata. Ideally, the process would be as automated as practical, to simplify the
periodic ingestion of the CSPs information, and provide a suite of tools that apply predefined
security policies, and raise alerts if the policies are breached.

As discussed in the previous section, Archer has a number of existing features that allow it to
address the challenges of risk assessments, compliance, and external audits. In addition, Archer
is highly extensible, which allows it to build CSP security assessments on top of its existing func-
tionality. Archer will be extended to support a specific set of REST APIs that will automatically
receive configuration updates from the CSP. However, not all CSP policies and procedures lend
themselves to automated interfaces, such as personnel vetting procedures. Thus, the REST APIs
will be supplemented with on-line questionnaires to be filled in by the CSPs. If the CSP makes
an update to their terms and conditions, they will be requested to review, and if applicable up-
date the questionnaires. In this way, Archer will be able to maintain an up-to-date picture of the
CSP security assessment, stored in the central repository in a canonical form so that records are
easily traceable. Archer stores the canonical data in the form of records (note, Archer’s records
are similar to database records, but are more flexible in their implementation), and records of a
certain class are associated with a given application. Different applications, and records types, can
be combined to form more complex interacting solutions. A set of applications and record types
were defined for Archer to support the CSP Security Assessment of the ESCUDO-CLOUD use
case architectures. The solution defines a number of standard policies and prerequisites that the
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Figure 4.12: Sample mapping between UC requirements and Gold, Silver, Bronze services

CSP must meet to be security compliant. Data owners are able to modify these policies as their
security requirements change over time, in order to ensure they meet the specific requirements of
their organization.

The organization, may wish to store different types of data that require different levels of
security requirements. For example, HR personnel data is often of the highest security, as there is
a regulatory requirement to keep the data from falling into unauthorized hands; additionally, there
may be restrictions on which jurisdictions the data can pass through or be stored in. At the other
end of the scale are might be product manuals that are freely distributable; the only requirement
for this type of data is that it cannot be modified by an unauthorized party, and that their storage is
resilient. These varying levels of security are often classified into bands, with increasing levels of
security features. Figure 4.12 illustrates an example of such a classification, offering different sets
of security features in each band.

For ease of use, the bands are typically given a notional value label, such as Bronze, Silver and
Gold. Gold, being the highest level, has the most restrictive security requirements. Whereas Silver
has lower/fewer security requirements, and Bronze is the lowest level of security that is acceptable
to the organization. The new CSP Security Assessment solution will define the increasing policies
and constraints that apply to the Bronze, Silver and Gold levels. There is likely to be an increasing
level of cost associated with increasing levels of security. Therefore, the organization can associate
a cost per GB/month of data stored to each of the security levels. The individual organization’s
departments can then make an informed decision on the price they are prepared to pay, for storing
their data on CSPs, compared to the level of risk they are prepared to accept. In some cases,
organizations may wish to offer a “Platinum” level of storage, where the user’s data is stored
within the organization and not outsourced to a CSP.

An additional useful feature of Archer, in the context of the modular architecture for Use
Case 4, is a risk assessment tool that delivers a risk assessment questionnaire to third parties.
Increasingly, organizations are using third parties to support their operations and services that
are delivered to clients (as is the case in Use Case 4). This dependency on external resources
introduces significant risks, most notably to regulatory compliance, data privacy, security breaches,
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Figure 4.13: Archer Risk Assessment Dashboard

errors in supply chain, and damage to the reputation of the service. Figure 4.13 shows a view of the
risk assessment dashboard that is used to manage and monitor risk reports and compare services
against policy.

Complementary to the ability to verify the status of the service with respect to requirements
defined in the service policy, this risk assessment enables the service provider to gain better in-
sights into the risks associated with their third party providers, and the controls that they have in
place to mitigate those risks. The results of the questionnaires conducted via Archer are used to
assess the overall risk to the service across several risk categories (compliance, financial, security,
reputation, resiliency, sustainability). These results are captured and managed so that action plans
can be established, where required, to resolve any significant risks.

4.6 Summary

The core objective of UC4 was to develop an architecture for an elastic Cloud storage service
that provides client-side encryption, and is supported by complementary mechanisms to manage
cryptographic keys, and offer further security guarantees. One example of such a mechanism is the
application of over-encryption [DFP+15a] [DFLS16] (introduced in D3.1, with an initial study in
D2.2), using EMC’s ECS platform, protecting data stored in ECS nodes from revoked users with
access to keys used for the BEL. WT performed a market comparison against different solutions
(e.g. pCloud, Tresorit and BoxCryptor) and examined features such as file sharing, multi-cloud,
device and session management, centralized management interface, virtual drives, data recovery,
data synchronization and secret storage containers. With this baseline set of feature requirements,
the architecture aimed to consolidate these into one solution, with particular emphasis on device
and session management, centralized management interface and secret storage containers.

In the demonstrator, a data owner has access to their files stored in the Cloud using an access
point available on the client. Three types of access points are available: a web portal access, a
mobile application, and a standalone executable installed on the client. The access point will open
a secure communication channel between the data owner and the CSP, allowing them to manage
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their account and their stored data in the Cloud. In addition, the user can access the services by
different devices share data and remove one in case of its theft (remote device wiping ).

By implementing client-side encryption the trust boundary is moved right up to the user layer,
meaning the data owner does not require the intervention of third-party providers to implement
the first line of defense against attackers attempting to observe or manipulate their data. Often, the
weakest point in any encryption scheme is the protection of the encryption/decryption keys. In this
architecture, keys are first encrypted and then securely stored in the secret storage. As a result, the
data owner has total control over how their data is protected in the Cloud, how it is accessed and
who may access it. Access control mechanisms are in place to prevent unauthorized users from
accessing the data (and keys). To further enhance the confidentiality guarantees of the solution,
mechanism for over-encryption and index shuffling have been tested, and offer protection against
revoked users and curious (or malicious) providers respectively.

Finally, a tool for policy compliance checking through self-assessment has also been im-
plemented, with templates defined that apply across all the ESCUDO-CLOUD use cases. Self-
assessment questionnaires completed by service providers ensure accountability for the services
that they provide to end-users. This enshrines the services in record, enabling end-users to make
decisions on service adoption based on trusted policy data from the provider matched against their
own requirements. Archers core strength, as it relates to the ESCUDO-CLOUD use cases, is its
ability to build policy templates that describe a Cloud services metrics (performance and security).
The security metrics defined in D1.1, D1.2, and D4.1 feed directly into the definition of that pol-
icy template and allow Cloud consumers to not only ensure that the service they are acquiring is
compliant with their requirements but also allow them to compare a number of providers offering
similar features.
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5. Conclusion

In this document, we presented the activities and results of the work carried out on the ESCUDO-
CLOUD use cases under Work Package 1 between M1 and M36. WP1 Use Case 1 to 4 assemble
a line of complementary tools that are empowering Cloud users with comprehensive means for
security. ESCUDO-CLOUD industrial partners and SMEs in WP1 deployed use cases in the form
of self contained demonstrators. The previous chapters outlined how the objectives per use case
were achieved by transfer and integration of research results from the individual WP2, WP3, and
WP4.

Use Case 1 addressed the scenario of guaranteeing to a data owner the protection of her data
as well as the ability to efficiently access and operate on them when relying on the cloud for their
storage. UC1 mainly fed from the WP2 research on protection techniques for oursourced data. The
UC1 tools extend cloud storage offerings such as OpenStack swift with a solution for encryption of
data-at-rest and key-management. By extending the OpenStack swift Cloud-service framework a
wide audience in the Cloud industry is addressed. Use Case 2 addressed the scenario of providing
the data owner with the ability not only to protect and access data, but also to selectively share
them with other users and owners. UC2 mainly transferred research results from WP3 on selective
information sharing in the Cloud. The tools of UC2 permit transition to the cloud to manufacturing
companies. Given critical customer information and requirement for full data ownership the tools
solve accountability problems on the on-premise as well as cloud operators side by processing
over encrypted data in the Cloud. Use Case 3 and Use Case 4 addressed the scenario of enabling
data owners to reason and assess trust in multi-clouds and federated clouds. To this end both use
cases picked up the research results Data-Protection-as-a-Service provided by WP4. The tools of
UC3 realize data protection for Cloud block, object and Big Data storage services. This helps
in moving towards a modular design for a secure data protection solution in a Federated Cloud
environment. In addition, UC4 tools specifically support SMEs in their competition with large
Cloud providers. The introduced elastic Cloud storage service provides client-side encryption and
policy compliance checking.

The line of ESCUDO-CLOUD Use Case 1 to 4 brought the trust boundary closer to the Cloud
users in their respective scenarios.
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