& Ref. Ares(2016)7201303 - 30/12/2016

Project title: Enforceable Security in the Cloud to Uphold Data Ownership
Project acronym: ESCUDO-CLOUD

Funding scheme: H2020-ICT-2014

Topic: ICT-07-2014

Project duration: January 2015 — December 2017

D2.3

Report on Data and Access Protection

Editors: Stefano Paraboschi (UNIBG)
Christian Cachin (IBM)
Enrico Bacis (UNIBG)
Marco Rosa (UNIBG)
Reviewers: Daniel Bernau (SAP)
Sabine Delaitre (WT)

Abstract

The overall goal of the ESCUDO-CLOUD project is to advance the state of the art for the protection of data
stored in the cloud. The project considers a variety of scenarios and the goal of Work Package 2 is to focus
on the realization of the basic protection services, which represent the foundation for the management of the
advanced data sharing and multi-provider cooperation services considered in the other Work Packages. This
deliverable reports on the work that has been done in the second year of the project within Work Package 2.
The analysis focuses on the main contributions by the work in the second year of the project with respect
to Task T2.1 “Protection of data at rest”, Task T2.2 “Key management solutions”, and Task T2.3 “Efficient
and private data access”.

Type Identifier | Dissemination Date
Deliverable D23 Public 2016.12.30

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
n under grant agreement No 644579. This work was supported in part by the Swiss State Secretariat for Education,

Research and Innovation (SERI) under contract No 150087. The opinions expressed and arguments employed herein

do not necessarily reflect the official views of the European Commission or the Swiss Government.

ESCUDO-CLOUD Consortium

1. Universita degli Studi di Milano UNIMI Italy

2. British Telecom BT United Kingdom
3. EMC Corporation EMC Ireland

4. IBM Research GmbH IBM Switzerland

5. SAPSE SAP Germany

6. Technische Universitdt Darmstadt TUD Germany

7. Universita degli Studi di Bergamo UNIBG Italy

8. Wellness Telecom WT Spain

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The below referenced consortium members shall have no liability for
damages of any kind including without limitation direct, special, indirect, or consequential damages that may result
from the use of these materials subject to any liability which is mandatory due to applicable law. Copyright 2016 by
Universita degli Studi di Milano, British Telecom, IBM Research GmbH, Universita degli Studi di Bergamo.

Versions

Version Date Description
0.1 2016.11.30 Initial Release
0.2 2016.12.14 Second Release

1.0 2016.12.30 Final Release

List of Contributors

This document contains contributions from different ESCUDO-CLOUD partners. Contributors
for the chapters of this deliverable are presented in the following table.

Chapter

Author(s)

Executive Summary

Stefano Paraboschi (UNIBG), Enrico Bacis
(UNIBG), Marco Rosa (UNIBG)

Chapter 1: Introduction

Stefano Paraboschi (UNIBG), Enrico Bacis
(UNIBG), Marco Rosa (UNIBG)

Chapter 2: Secure Cloud Storage

Enrico Bacis (UNIBG), Sabrina De Capitani
di Vimercati (UNIMI), Sara Foresti (UNIMI),
Stefano Paraboschi (UNIBG), Marco Rosa
(UNIBG), Pierangela Samarati (UNIMI)

Chapter 3: Protection of Access Confidential-
ity

Sabrina De Capitani di Vimercati (UNIMI),
Sara Foresti (UNIMI), Riccardo Moretti
(UNIMI), Stefano Paraboschi (UNIBG), Ger-
ardo Pelosi, Pierangela Samarati (UNIMI)

Chapter 4: Scalable Distributed Key Manage-
ment for Cloud Storage

Mathias Bjorkqvist (IBM), Christian Cachin
(IBM), Felix Engelmann (IBM), Alessandro
Sorniotti (IBM)

Chapter 5: Conclusions

Stefano Paraboschi (UNIBG), Enrico Bacis
(UNIBG), Marco Rosa (UNIBG)

Contents

Executive Summary

1 Introduction

2 Secure Cloud Storage

2.1
2.2
2.3
24

2.5

2.6

Stateof the Art L
ESCUDO-CLOUD Innovation
BasicConcepts e
Access Control Enforcement in Swift,
24.1 Keys and User-Based Repositories
2.4.2 Policy-Based Encryption
Policy Updates
2.5.1 Enforcement of Policy Updates
2.5.2 Implementation of Over-Encryption
Experimental Results
2.6.1 Comparison Between Client Re-Encryption and Over-Encryption
2.6.2 Analysis of Over-Encryption Approaches
2.6.3 Streaming and Batch Encryption 0L,
2.6.4 Application of Two Encryption Layers

3 Protection of Access Confidentiality

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

Stateof the Art L
ESCUDO-CLOUD Innovation
Overview of the Approach
Data Organization and Storage
Uniform ACCeSSES v v v i e e e e e
Target Bubbling
Speculative Rotations
Physical Re-allocation,
Analysis and Experimental Evaluation

4 Scalable Distributed Key Management for Cloud Storage

4.1
4.2
4.3
4.4
4.5
4.6

Stateof the Art e
ESCUDO-CLOUD Innovation,
Security Model
Objectives o e e e
Related Work e

11

13

15
15
16
17
18
18
20
21
21
23
25
26
26
28
28

31
31
32
33
33
35
37
38
40
41

6 Contents

4.6.1 FileFormats 48

4.6.2 SystemInteractionso 50

47 Evaluation 52
47.1 Scaling 53

4772 Latency e e e e e e e 54

473 COnSiSteNCY v v v v o i e e e e e e e e e e 56

4.8 Outlook 56
4.8.1 Per Node Asymmetric Key-Pair 56

4.8.2 Protectionof KeysinMemory L. 57

483 AccessControl L 57

49 Finalremarks 57

5 Conclusions 58
Bibliography 59

ESCUDO-CLOUD Deliverable D2.3

List of Figures

2.1

2.2
23

24
25

2.6
2.7

2.8

2.9

2.10
2.11

3.1
3.2
33
34

3.5

3.6
3.7

4.1
4.2
4.3
4.4
4.5

An example of authorization policy defined by user Alice (a) and corresponding
policy-based encryption (b) 18
Policy-based encryption &4 equivalent to the authorization policy <74 in Figure 2.1(a) 21
An example of implementation of a revoke operation using immediate (a), on-the-

fly (b), and opportunistic (c) over-encryption 22
An example of insertion of an object into an over-encrypted container 23
Overhead of all the solutions
... 26
Cumulative server work with different over-encryption approaches 26
Comparison of the overhead caused by Streaming and Batch on-the-fly approaches
with respect to the directget call 28
BEL+SEL encryption performance on a 1MB file using two subsequent AES in-
vocations and TWOAES 28
AES encryption rate for the modes ECB, CBC, and CTR using the pycrypto library
withoutand with AES-NI 29
Re-encryptionusing AES 29
Re-encryptionusing AES-NI o, 30
Data structure construction and its physical representation 34
Two sample accessesol 36
Tree rotations oL e e 37
Nodes downloaded to access U and rotations performed to bubble up the target
(a), tree with the target bubbled to the root and speculative rotations (b), and the
resulting tree (C)o e e e 38
An example of physical re-allocation (a) and of view of the server before (b) and
after (c) the accessin Figure 3.4, 40
Average height of a tree with 256 nodes, considering 500,000 accesses 42
Average length of the maximum common prefix among the paths reaching the
same target (a) and rank/frequency distributions of the block identifiers corre-
sponding to self-similar access profiles with y€{0.5,0.2,0.1} when only the phys-
ical re-allocation (b), and when all protection techniques are applied (¢c) 43
REKHeader. 49
MEK structure e e 50
Key manager components 51
Scale up with number of clients. 53
Proportional scale-outeffect 54

8 List of Figures

4.6 TLS handshake timings Lo 55

% ESCUDO-CLOUD Deliverable D2.3

List of Tables

4.1 Processing times in milliseconds of queries to CCR and its components. 56

Executive Summary

The protection of outsourced data is a problem which needs the design and deployment of ad-
vanced technical solutions. With current techniques on one hand we have a significant exposure
to many significant security risks of the data that is stored on cloud infrastructures. On the other
hand, the unavailability of robust and efficient techniques limits the adoption of cloud technology
and reduces the benefits that the Cloud can bring to many IT scenarios. The crucial aspect as-
sociated with the use of Cloud Service Providers (CSPs) is the loss of control over the data and
applications imposed on the data owners. Encryption permits to mitigate this loss of control, but an
effective use of encryption in this scenario requires the definition of adequate conceptual models
and technical implementations. The goal of ESCUDO-CLOUD is to support this evolution.

The goal of this deliverable is to report on the research work done within Work Package 2 in
the second year of the project. The tasks considered in this deliverable are Task T2.1 “Protec-
tion of data at rest”, Task T2.2 “Key management solutions”, and Task 2.3 “Efficient and private
data access”. The work in Task T2.4 “Requirements-based Threat Analysis” will be described in
Deliverable D2.4, which is currently being prepared and will be ready at M27. This deliverable
reports on three separate research investigations, each presented in a dedicated chapter.

Chapter 2 reports on the realization of an extension of current cloud storage services with
the introduction of a layer of encryption transparent to applications. The chapter focuses on the
analysis of key management techniques that allow efficient application of an access control pol-
icy on the objects. The investigation also considers different approaches for management of the
evolution of encryption, with an emphasis on the consideration of alternatives for the application
of over-encryption. The tool implemented in ESCUDO-CLOUD WP2 and described in D2.2 has
been used as a platform for the experimental evaluation of the performance of the alternatives, in a
variety of scenarios. The experiments are associated with an evaluation that justifies the observed
performance and provides indications about when a given approach should be preferred.

Chapter 3 is the result of the work on access privacy and describes an alternative to the shuffle
index, which had been presented in Deliverable D2.1 and was also investigated in Work Package 3
and Work Package 4. The structure proposed here is based on an encrypted binary tree (compared
to the encrypted B-tree which is the static structure of the shuffle index). Each access to the binary
tree is then managed by applying a randomly chosen reorganization of the data structure, which
aims at hiding the access against a server that monitors the sequence of physical access requests.
The source of the protection is then the realization of a reorganization of the tree both at the
physical and at the logical level.

Furthermore, Chapter 4 addresses scalable key management that aims at supporting the work-
load from a production-grade cloud storage system with millions of keys and thousands of clients.
This work was done in the context of Task 2.2 (Key-management solutions). The report describes
the realization of a key manager, which uses an untrusted distributed key value store (KVS)
for consistent key distribution over the Key-Management Interoperability Protocol (KMIP). To

11

12 List of Tables

achieve confidentiality, it uses a key hierarchy where every key except a root key itself is en-
crypted by the respective parent key. The hierarchy also allows for key rotation and, ultimately,

secure deletion of data.

% ESCUDO-CLOUD Deliverable D2.3

1. Introduction

The deliverable reports on the research that was done within Work Package 2 in ESCUDO-
CLOUD. The Work Package is organized into four tasks and the work reported in this deliverable
considers tasks T2.1, T2.2, and T2.3. The work executed within Task 2.4 “Requirements-based
Threat Analysis” will be described in Deliverable D2.4, which is currently being prepared and will
be released at M27.

This deliverable contains three core chapters, each dedicated to the presentation of a specific
investigation on a topic associated with the management of encrypted outsourced data. The report
does not provide an exhaustive representation of the research done within tasks T2.1, T2.2 and
T2.3. A full coverage will be obtained at the end of the project with the preparation of the deliv-
erables of the third year. Some work is going to be reported in Deliverable D2.5, dedicated to the
construction of the tools implementing the techniques for the protection of cloud storage. Other
research lines on data protection for outsourced data that are being investigated will be described
in the final deliverable D2.6 due at M34.

Chapter 2 focuses on the investigation of techniques that combine object protection with the
management of the evolution of the access control policy. This topic is centered on Work Pack-
age 2, due to the emphasis on the application of an encryption layer to objects in order to protect
their confidentiality even against the server hosting them. Also, key management is crucial to the
realization of these services. These aspects are integrated with the management of the access con-
trol policy and the realization of the sharing of objects, which is investigated in Work Package 3.
With the widespread success and adoption of cloud-based solutions, we are witnessing an ever
increasing reliance on external providers for storing and managing data. This evolution is greatly
facilitated by the availability of solutions - typically based on encryption - ensuring the confiden-
tiality of externally outsourced data against the storing provider itself. Selective application of
encryption (i.e., with different keys depending on the authorizations holding on data) provides a
convenient approach to access control policy enforcement. Effective realization of such policy-
based encryption entails addressing several problems related to key management, access control
enforcement, and authorization revocation, while ensuring efficiency of access and deployment
with current technology. We present the design and implementation of an approach to realize
policy-based encryption for enforcing access control in OpenStack Swift. The work is related
with the tool that has been described in Deliverable D2.2. The availability of the implementation
described in D2.2 allowed us to report experimental results evaluating and comparing different
implementation choices of our approach.

Chapter 3 presents a novel approach for guaranteeing access privacy to data stored at an exter-
nal cloud provider. The solution relies on the grouping of resources into buckets then organized
with a binary search tree. The tree is built on an index computed in a non-invertible non-order
preserving way, and supports efficient key-based retrieval. The approach to provide access privacy
builds on this data organization offering uniform observability to the server in access execution and
dynamically changing not only the physical storage allocation, but also the logical structure itself.

13

14 Introduction

The analysis and experimental evaluation show the effectiveness of our approach. This structure is
an alternative to the shuffle index, which had been presented in Deliverable D2.1 and has been the
subject of extensive investigation in the other ESCUDO-CLOUD technical Work Packages. As it
will be discussed in the chapter, this tree structure has the benefit that it offers protection operating
at a different level. This leads to a simplification of the structure that must be used by the client
to access the data, reducing the need to have local cache in the client. The benefit is a more direct
adaptation of this technique to scenarios where there are multiple clients accessing the same tree,
without the need to introduce a centralized proxy service that mediates all requests, as done by
many other approaches for access privacy.

Chapter 4 describes a scalable key manager, which uses an untrusted distributed key-value
store (KVS) and is accessible over the Key-Management Interoperability Protocol (KMIP). It im-
plements a key hierarchy and focuses on providing scalable performance that is suitable to serve
keys at very high rate. Specifically, a prototype has been integrated with IBM GPFS, a highly
scalable cluster file system, where it serves keys for file encryption. Linear scale-out is achieved
even under load from key updates.

The outline of this Deliverable is the following. Chapter 2 presents the work on the realization
of advanced approaches for key management in the cloud storage of client-encrypted objects. The
experiments refer to the use of the ESCUDO-CLOUD implementation in Swift, but the techniques
can be adapated to any domain where objects are stored in an encrypted format. Chapter 3 consid-
ers the topic of access privacy, which is investigated in Task T2.3, and presents a novel approach
based on encrypted binary trees and the application of rotations to hide the access pattern. Chapter
4 illustrates the work on the realization of a scalable key management service. Finally, Chapter 5
draws a few concluding remarks.

% ESCUDO-CLOUD Deliverable D2.3

2. Secure Cloud Storage

The ESCUDO-CLOUD project aims at protecting data stored in the cloud with the use of encryp-
tion. An important benefit provided by data encryption is that it enables effective enforcement of
access control. In fact, data can be encrypted with different keys, depending on the authorizations
holding on them, and keys shared with users according to authorization (policy-based encryp-
tion [14]). This policy-based encryption translates the access control policy into an equivalent
encryption policy which provides self-protection and effective access control enforcement on the
outsourced data.

One of the complicating aspects in the management of policy-based encryption relates to the
enforcement of possible changes to the access control policy, and in particular revocation of au-
thorizations. When resource maintenance is decoupled from access control thanks to the use of
encryption, revocation cannot be simply managed by dropping access to the encryption key (as
done in other scenarios). The revoked user can, in fact, have maintained local copies of the keys,
and if the layer of protection is not refreshed, the user could still be able to pass the encryption
wrap and access objects for which she does not have authorization anymore. On the other hand,
changing the key and re-encrypting objects affected by revocation would entail download and re-
upload operations by owners, which could become cumbersome and affect the performance of
the system. The solution that was proposed to this problem in [14] introduces over-encryption,
based on the application by the server of an additional layer of encryption (operating on the object
already encrypted by the data owner) with a key not accessible by the revoked user, thus adapting
the encryption on objects to the new state of the access control policy.

2.1 State of the Art

The design of encryption techniques for data stored in the cloud is a large research area, with a
considerable variety of topics and proposals. A significant amount of work has been dedicated to
the design of techniques that support the efficient search and retrieval of encrypted data (e.g., [42]).
Techniques have been designed that let the data be available only to users with specific properties
(e.g., ABE [10, 25]). Another important line of research focuses on protecting access privacy
(e.g., [18, 18, 39]). In this deliverable, we focus the analysis of over-encryption, on the approaches
for existing cloud storage frameworks, and on proposals for the sharing of large client-encrypted
objects (instead of structured data).

Over-encryption has been proposed to effectively and efficiently enforce policy updates over
encrypted outsourced data [14, 15]. This solution considers the presence of a single data owner,
and it has been extended to consider multiple users owning (and willing to share) data [13]. This
approach differs from the solution we proposed as it relies on Diffie-Hellman, while our approach
is based on the definition of symmetric and asymmetric KEKs. Also, these proposals consider a
generic resource management scenario, with no specific connection to existing cloud frameworks.

15

16 Secure Cloud Storage

Several proposals have contributed to the design of solutions for the protection of outsourced
data with reference to current cloud frameworks. In [2], OpenStack security issues are extensively
analyzed. The confidentiality of objects stored in Swift is considered as a significant aspect, but no
specific technical solution is presented. A subsequent work by the same authors [1] describes an
approach for the encryption of objects in Swift. In [31] another approach for server-side encryption
is presented, with the goal of protecting “data at rest” (i.e., an approach for making the object
representation on storage devices protected against physical accesses). In these approaches, keys
are never seen by clients and they do not consider the support for container ACLs. Then, they do
not have to look at the management of the encryption policy and its evolution.

A number of proposals have considered the application of encryption on the client-side.
In [45], a service is presented that maps a file system to an encrypted representation on Amazon S3.
The proposal does not support the sharing of files among distinct users and ACLs are not consid-
ered. In [30], an architecture for sharing encrypted objects outsourced to a Cloud Service Provider
is presented. Revocation is considered as important and difficult and the proposed solution en-
forces it by limiting access to encryption keys for revoked users. In [46], an extensive architecture
for the management of a cloud-based data sharing system is proposed. Resources are protected
with keys that are consistent with the policy and significant attention is paid to revocation. The
approach used is based on proxy re-encryption and lazy re-encryption. Proxy re-encryption relies
on expensive cryptographic techniques that allow a server to convert a representation of a resource
encrypted with a key to one associated with a different key, without letting the server executing the
transformation being able to access the plaintext of the resource. Proxy re-encryption supports ex-
pressive encryption schemes, which allow attribute-based selection. In contrast, over-encryption
uses standard symmetric encryption, which does not support those features but exhibits better
performance. Lazy re-encryption shares some features with our opportunistic over-encryption ap-
proach, as it saves on re-encryptions by applying them only after an access request is made to the
object, but the motivation is different. The advantage of lazy re-encryption is due to the ability to
avoid re-encryptions for resources that are not accessed within a given number of policy updates.
The same benefit is also valid in our opportunistic approach, but in those scenarios our on-the-fly
approach can be preferable.

The OpenStack Swift community is making a significant effort toward the introduction of
object encryption in Swift [40]. This initiative saw the direct support by the ESCUDO-CLOUD
project within UC1. The support is offered for the server side, aiming at protecting data at rest.
There is a plan to adapt the solution presented in this chapter to this implementation, within the
work that will be reported in Deliverable D2.5 at M27.

2.2 ESCUDO-CLOUD Innovation

Policy-based encryption for providing self-enforcement of the access control policy and over-
encryption for supporting policy changes result particularly appealing and promising. However,
their integration and deployment in available cloud storage systems requires addressing several
additional issues, including: the support for co-existence of several data owners in a single system,
the realization of key management solutions to enable users to access keys used for objects for
which they have authorizations, and the implementation of policy-based encryption and over-
encryption functionality with services supported by the cloud service providers.

This chapter reports how ESCUDO-CLOUD innovated over all these directions, illustrating
the realization of policy-based encryption and over-encryption in the context of OpenStack Swift.

% ESCUDO-CLOUD Deliverable D2.3

Section 2.3: Basic Concepts 17

OpenStack [36] represents today the reference platform for the cloud [43], and is receiving signif-
icant attention by the industrial community, and Swift is the OpenStack’s object storage system.
Swift exhibits features that are shared by most object storage solutions for the cloud (e.g., Amazon
S3).

In this chapter, we illustrate how the work of ESCUDO-CLOUD led to a system where policy-
based encryption can be applied over the OpenStack Swift module. Policy changes are enforced
implementing over-encryption in Swift. For over-encryption, in particular, we investigate differ-
ent implementation alternatives, which can be suitable for different scenarios, depending on the
frequency of access requests and policy changes.

Furthermore, there are two main concrete contributions to innovation of ESCUDO-CLOUD
in this work. First, it provides an effective design and implementation of policy-based encryp-
tion and over-encryption, which can be adopted by others for immediate deployment in current
cloud storage solutions. Second, our extensive experimental evaluation of different design choices
can provide precious observations for such adoption, enabling the tuning of the implementation
depending on the characteristics of the considered scenario.

2.3 Basic Concepts

We consider a scenario where users wish to outsource data to an external Cloud Service Provider
(CSP) and selectively share their data with others. Different data (owned by the same user) may
be accessible by different sets of users. Every data owner has an access control policy specifying
authorizations on her data.

We assume that the CSP is based on the OpenStack framework, which includes the Swift mod-
ule, an object storage service allowing users to store and access data in the form of objects (i.e.,
each resource, such as a file, uploaded on Swift is an object). Swift organizes objects in contain-
ers, which are user-defined storage areas containing sets of objects. Containers are organized in
tenants, which are sets of containers. Each tenant is usually assigned to an organization. Swift
enforces discretionary access control restrictions over the objects it stores by associating a read
access control list and a write access control list with each container and tenant in the system.
These access control lists identify the users who can read and write the container/tenant. To en-
force access control restrictions, Swift relies on Keystone for users authentication. Keystone is
an OpenStack component acting as identity server, which provides a central directory of users
mapped to the OpenStack services they can access.

We assume the CSP to be honest-but-curious, that is, trusted to correctly manage the data (i.e.,
trustworthy) but not trusted for accessing the content of objects. Consistently with our focus on
data confidentiality, in this chapter we are concerned with the representation and enforcement of
an access control policy regulating read access to objects. We note however that our approach can
be extended to the consideration of write authorizations [12]. In the following, acl(o) denotes the
read access control list of object 0 and .7, is the set of read access control lists defined by user u
for her objects. Figure 2.1(a) illustrates an example of authorization policy defined by user Alice.
In this example, we assume that there are three users, Alice (A), Bob (B), and Dave (D), and four
objects (01, 02, 03, and 04) owned by Alice. In the matrix in Figure 2.1(a), entry [u,0] has value 1
if u is authorized to read o (i.e., u€acl(o;)) and 0 if u is not authorized to read o (i.e., u€acl(o;)).

Our work is based on the policy-based encryption and over-encryption approach proposed
in [14, 15], and focuses on their representation and enforcement with Swift, which also requires
some re-definition and adjustment of these concepts. Essentially, each user is associated with a

% ESCUDO-CLOUD Deliverable D2.3

18 Secure Cloud Storage

01 02 03 04 01 02 03 04
Al1]1]1]1 mp ~ {kikoksks) key|ky ko ks|ks]
Bi1|1|1]1 mpg ~+ {ki,kp,k3,ks}

DO|1]0|1 n’lDW{kz,k4}
Authorization policy.aZy Policy-based encryption &y
(a) (b)

Figure 2.1: An example of authorization policy defined by user Alice (a) and corresponding policy-
based encryption (b)

symmetric key, and each object is encrypted using a symmetric key that depends on the access
control policy. Keys are organized in such a way that a user u can derive (via public tokens), all
and only the keys of the objects o; she is authorized to access (i.e., u€acl(o;)). Policy updates,
which would require re-encryption of an object, are enforced by super-imposing a second layer of
encryption on the encrypted object itself. Every object can then have a first layer of encryption
(BEL, Base Encryption Layer) imposed by the data owner for protecting the confidentiality of the
data from unauthorized users as well as from the CSP, and a second layer of encryption (SEL,
Surface Encryption Layer) applied by the CSP for protecting the object from users who are not be
authorized to access the object but who might know the underlying BEL key. A user will be able
to access an object only if she knows both the SEL key and the BEL key with which the object is
encrypted. In the following, we use notation &, to denote the policy-based encryption equivalent to
the authorization policy 7, defined by user u. Figure 2.1(b) illustrates the policy-based encryption
equivalent to the authorization policy in Figure 2.1(a). In this figure, keys my,mp,mp are the
symmetric keys of the users and keys ki, k»,k3,ks are the symmetric keys used to encrypt the
objects. Notation m, ~ k, represents the fact that key k, is derivable from key m,. In the remaining
sections, we first describe how a policy-based encryption can be realized in Swift (Section 2.4),
and then illustrate how to enforce policy updates (Section 2.5).

2.4 Access Control Enforcement in Swift

Our approach translates the authorization policy defined by a user into a policy-based encryption
that relies on the use of different keys and ad-hoc structures supporting the client-based Swift
encryption. In this section, we describe such keys and ad-hoc structures (which are stored as
traditional Swift objects), and then illustrate how policy-based encryption can be implemented.

2.4.1 Keys and User-Based Repositories

Our approach is based on the definition and management of different keys. There are (symmetric)
keys associated with objects for objects’ encryption (enforcing the self-protection mentioned in
the introduction). Also, each user is associated with a (symmetric) key as well as with two pairs
of asymmetric keys to support identity management and signature, respectively. Finally, autho-
rizations are realized by encrypting object keys with user keys. This allows users to retrieve the
key of objects they are authorized to access, providing the same functionality that public-tokens
provided in [14, 15].
We describe the different keys, their characteristics and functionality in the following.

% ESCUDO-CLOUD Deliverable D2.3

Section 2.4: Access Control Enforcement in Swift 19

Data Encryption Key (DEK) k;

Every object o; is protected by symmetric encryption using a DEK k;. Each DEK k; has a given
size, is associated with an encryption algorithm, and has an identifier, denoted id (k;), that identifies
the key among all the keys used in the system.

Master Encryption Key (MEK) m,

Every user u has a personal symmetric master encryption key m,. The knowledge of this key
permits to access, directly or indirectly, all the objects that user u is authorized to see. Given the
user identity loss that would derive from a compromise of the MEK, it is assumed that the user
keeps the MEK only on the client-side, never exposing it to the server or to other users.

User Encryption Key Pair (py,s,)

Each user u is associated with an asymmetric key pair (p,,s,) for encryption (our implementation
adopts RSA). As we show later on, the availability of asymmetric cryptography supports the re-
alization of a cooperative cloud storage service, where each user may make her objects available
to other users. Note that in most application domains, the correspondence between a user identity
and a public key is supported by certificates issued by a trusted Certification Authority. Swift
can instead benefit from the availability of Keystone, which already centralizes the management
of user identities, and the public key is assumed to be available in the user profile managed by
Keystone.

User Signing Key Pair (spy,ssy)

Each user u is associated with an asymmetric key pair (sp,.,ss,) for signing messages (our im-
plementation adopts EC-DSA). The reason for having a signing key pair is that it is common in
security systems to separate the encrypting and signing identities. This improves security and flex-
ibility, giving the option to use a dedicated cryptographic technique for each function. Signatures
are used to guarantee the integrity of objects and of the information that users adopt for deriving
the DEKs. Like for asymmetric encryption, the public key for signatures is also stored in the
Keystone profile of users.

Key Encryption Key (KEK)

A KEK is at the basis of the mechanism that translates the access control policy defined by a
user into an equivalent policy-based encryption. Intuitively, a KEK is the encryption of a DEK
that a user can extract using a secret (key) that only she knows. For each container that a user is
authorized to access, there is therefore a KEK that the user can decrypt to obtain the DEK used
for encrypting the objects in the container. As we will see in the following sub-section, there are
two variants of KEKSs, depending on the cryptographic technique used to protect them: symmetric
KEKSs, encrypted with the MEKSs of users, and asymmetric KEKs, encrypted with the public keys
of users. The KEKs that allow a user u to derive the keys of the objects she is authorized to access
are stored in a user-based repository, denoted %,. Each KEK is characterized by the following
information: a KEK identifier, the identifier of the protection key, the identifier of the encrypted
key, a timestamp, the identifier of the creator (only for asymmetric KEKs), an authentication
code, and the encrypted key. The authentication code is used to verify the integrity of a KEK

% ESCUDO-CLOUD Deliverable D2.3

20 Secure Cloud Storage

and is generated with the symmetric key of the user who creates the KEK (in case of symmetric
KEK) or with the private signing key of the creator (in case of asymmetric encryption). Functions
are available that allow the user to extract from her repository the KEK associated with a given
protected key identifier.

The identifier of the DEK used to protect an object is maintained in the descriptor of the object
itself. Such a piece of information is needed, whenever a user accesses an object, to retrieve the
right KEK that allows the user to derive the corresponding DEK. Analogously, the descriptor of a
container includes the identifier of the key to be used to encrypt the objects that will be inserted
into the container. At initialization time, the key identifier in the descriptor of the objects stored
in a container coincides with the key identifier in the container descriptor. As we will discuss in
Section 2.5, due to policy changes, the key associated with a container may change and objects in
the container may still be protected with a previous container key.

2.4.2 Policy-Based Encryption

All users in the system can define an access control policy for the objects they own. We now
describe how the authorization policy <7, defined by user u is translated into an equivalent policy-
based encryption &, using the keys illustrated in the previous section.

User u creates as many containers Cy,...,C,, as needed and, for each of them, creates a DEK
ki, i=1,...,m, using a robust source of entropy. Consistently with Swift working, we assume
that all objects in a container have the same acl. User u then encrypts all objects in a container
C; with the DEK k; of the container and stores them in C;, which will have therefore the same acl
for all the objects in it. Each DEK k; is encrypted with the MEK m,, of the user who created the
container and the resulting KEK is stored in the user’s repository Z%,. For each user u; in the acl
corresponding to container C;, user u encrypts DEK k; with u;’s public key p,; and signs it using
58y, thus producing an asymmetric KEK usable by u;. This KEK is stored in u;’s repository %,

Example Consider the authorization policy of Alice in Figure 2.1(a). Figure 2.2 shows how this
policy is translated into an equivalent policy-based encryption. Alice creates two containers C; and
C, and stores objects 01 and o3 both encrypted with key k; in Cy, objects 0, and o4 both encrypted
with k> in C,. She then creates her KEKs as well as the KEKs that Bob and Dave can use to access
the objects for which they are authorized. In particular, Alice encrypts DEKSs k; and k, with her
MEK my and stores the resulting KEKs in her repository %Z4. Then, she encrypts DEK k| with
Bob’s public key pp and DEK k; with public keys pp and pp of Bob and Dave, respectively. The
resulting KEKSs are stored in repositories Zg and Zp, respectively. The figure also illustrates the
profiles of Alice, Bob, and Dave managed by Keystone. These profiles contain the public keys of
the users.

When a user u; wishes to access an object o;, the object descriptor is first accessed to retrieve
the identifier of the DEK used to encrypt o;. This identifier is then used to retrieve the correspond-
ing KEK from repository %, and then derive the DEK k;. Derivation will require user u; either to
use her own MEK m,,; (for symmetric KEK), or to apply the private encryption key s,; (for asym-
metric KEK). To improve the efficiency of the subsequent accesses to the key and simplify the
procedure, once a DEK provided by another user is extracted from an asymmetric KEK, the KEK
is replaced in the repository by a symmetric KEK built using the user own MEK. For instance,
suppose that Bob requires access to object o;. Bob first retrieves from the descriptor of object 0,
the identifier id (k) of DEK k;. Then, it retrieves from %y the corresponding KEK, decrypts it

% ESCUDO-CLOUD Deliverable D2.3

Section 2.5: Policy Updates 21

,, L .~ ... S
Container: C; Container: C, KEKs Alice KEKSs Bob KEKs Dave 3 i Alice Bob Dave
Acl: [A, B] Acl: [A, B, D] ; 3
Key: id(k;) Key: id(k,) P Pa Py Py

AL A A I o ESEIE AL
) |
0, o, 0, o, b

Figure 2.2: Policy-based encryption &4 equivalent to the authorization policy <7 in Figure 2.1(a)

using his private key sp and uses the retrieved DEK for decrypting o,. Furthermore, Bob replaces
the original asymmetric KEK with a symmetric KEK obtained by encrypting k; with his master
key mp.

When a new object o; is inserted into a container C;, user u retrieves the descriptor of the
container and looks for the identifier id(k;) of the corresponding DEK k;. The user will then look
in her repository %, for the KEK associated with id(k;) and will extract the corresponding DEK.
The DEK will be used to encrypt object o; that will be given to Swift and DEK id(k;) will be
inserted into the object descriptor. For instance, suppose that Alice inserts a new object o5 in C,.
Since the DEK associated with C; is ky, Alice encrypts o5 with ky, inserts id (k) in the descriptor
of 05, and stores the encrypted version of o5 in C,.

2.5 Policy Updates

Since the authorization policy regulating access to objects in Swift is enforced through a policy-
based encryption, every time the authorization policy changes, also the encryption policy needs to
be re-arranged accordingly. Updates to the authorization policy include the insertion and deletion
of users, objects, and authorizations. The insertion of a user requires the generation of her master
key, user encryption key pair, and signing key pair, and the insertion of her public keys in Keystone.
The removal of a user requires only the removal from Keystone of her public (encryption and
signing) keys. The removal of an object instead requires its deletion from the container including
it. We then focus on granting and revoking authorizations, and on the insertion of new objects.
For simplicity, but without loss of generality, we consider policy updates that involve a single user
u; and a single container C (the extension to a set of users and of containers is immediate).

In the remainder of this section, we first illustrate how policy updates can be realized, and
then discuss different alternatives for the practical implementation in Swift of the over-encryption
requested for their enforcement.

2.5.1 Enforcement of Policy Updates

We now illustrate how granting and revoking authorizations as well as the insertion of a new
object with its authorization policy can be enforced. Recall that authorization policies operate at
the granularity of container. Then, grant and revoke operations modify the set of users authorized
to access a container C, and hence all the objects that it stores. Also, the insertion of an object in
a container implies that it inherits the container ACL.

% ESCUDO-CLOUD Deliverable D2.3

22 Secure Cloud Storage

over-encryption
Container: C, module Container: C, Container: C,
Acl: [A, D] Acl: [A, D] Acl: [A, D]
Keys: id(k,), id(ks), id(k*) Keys: id(k,), id(k3), id(k*) Keys: id(k), id(k3), id(k*)
Current key: id(k3) Current key: id(ks) Current key: id(k3)
0, (O & O, O, 0, 0,

(a) (®) (©

Figure 2.3: An example of implementation of a revoke operation using immediate (a), on-the-fly
(b), and opportunistic (c) over-encryption

Grant Authorization

If user u grants u; access to container C (and hence to the content of all its objects), she simply
needs to create an (asymmetric) KEK enabling u; to derive the DEK k of the container and to
store it in the repository %, of user u;. For instance, with reference to the authorization policy in
Figure 2.1(a), to grant Dave access to container Cy, Alice needs to create a KEK enabling Dave to
derive k;.

Revoke Authorization

If user u revokes from u; access to container C (and hence to all its objects), it is not sufficient to
delete the KEK that allows u; to derive the DEK k of the container, as the revoked user u; may have
accessed the KEK before being revoked and may have locally stored its value. A straightforward
approach to revoke user u; access to container C consists in replacing the DEK of the container with
a new key k... However, this would require the owner u of the container to download from the
server all the objects in C, decrypt them with the original DEK &, encrypt them with the new DEK
kqew, and then re-upload the encrypted objects, together with the KEKs necessary to authorized
users to derive k.. This would cause a significant performance and economic cost to user u. To
limit such an overhead, we adopt over-encryption (Section 2.3). Hence, when a user u revokes
from another user ; the authorization to access the objects in a container C, u updates C’s acl and
asks the storing server to over-encrypt the objects in C with a SEL key &° that only non-revoked
users can derive. Each container is then associated with a DEK k at the BEL enforcing the initial
authorization policy, and possibly also with a DEK k° at the SEL enforcing revocations. Also,
there is a KEK for each user initially authorized for C enabling her to compute &, and a KEK for
each non-revoked user enabling her to compute k°. For instance, consider the authorization policy
in Figure 2.1(a), and assume that Alice wants to revoke from Bob the access to C;. As illustrated
in Figure 2.3(a), objects 0, and o4 are over-encrypted with a SEL key £°. Also, the KEK enabling
Bob to compute k; is dropped from g, while the KEKs enabling Alice and Dave to compute k*
are created and inserted into %4 and %), respectively.

Insert Object

When a new object o; is inserted into a container C, the object inherits the acl of the container.
To enforce such an authorization policy, the object owner u can simply decide to encrypt o; in the

% ESCUDO-CLOUD Deliverable D2.3

Section 2.5: Policy Updates 23

Container: C,

Acl: [A, D]

Keys: id(ky), id(k3), id(k*)
Current key: id(k3)

05

(@)
~=Di=D "
@)
=Di=D °

Figure 2.4: An example of insertion of an object into an over-encrypted container

same way as the objects already in the container. However, if the authorization policy regulating
access to the container has already been modified, this would require to encrypt o; with both the
DEK at the BEL k and the DEK at the SEL k° associated with the container. Since the policy
of object 0; has never been updated, the adoption of the SEL might be an overdo. We therefore
propose to adopt a new DEK k,,,, at the BEL to protect objects that are inserted into a container
on which revoke operations had been applied. As a consequence of the revoke operation (and
the new acl associated with the container), a new DEK BEL key (and the corresponding KEKs)
corresponding to the new acl is generated for the container, and used for objects that will be
inserted into the container after the revoke operation. While for existing objects over-encryption is
needed to guarantee protection from the revoked user, new objects can be encrypted with the new
key known only to the users actually authorized for them. To enable non-revoked users to derive
the new (current) key of the container, an (asymmetric) KEK enabling them to derive the new key
is added to their repositories. Consider, as an example, container C, illustrated in Figure 2.3(a),
which is encrypted with k, at the BEL and with &° at the SEL because of the revoke of Bob.
Assume now that Alice needs to insert a new object os into Cp. Object os will be encrypted at
the BEL with key k3, generated when Bob has been revoked access to C, (together with the KEKs
enabling Alice and Dave to compute k3 from their own private key). Figure 2.4 illustrates the
content of container C, after the insertion of os.

2.5.2 Implementation of Over-Encryption

The implementation of over-encryption for the enforcement of revoke operations in Swift can
operate in different ways, depending on the time at which SEL encryption is applied, which can be:
materialized at policy update time (immediate), performed at access time (on-the-fly), or performed
at the first access and then materialized for subsequent accesses (opportunistic). In the following,
we elaborate on each of these strategies.

Immediate Over-Encryption

The storing server applies over-encryption when a user revokes the authorization over container
C to a user u;. Immediate over-encryption requires the user to define, at policy update time: the
SEL DEK £* necessary to protect the objects in the revoked container C, and the KEKs necessary
to authorized users (and to the server) to derive k°. Also, the objects in container C will be over-
encrypted. The server will then immediately read from the storage the objects in C, re-encrypt

% ESCUDO-CLOUD Deliverable D2.3

24 Secure Cloud Storage

their content (possibly removing SEL encryption), and write the over-encrypted objects back to
the storage. Hence, immediately after the policy update, the objects in C are stored encrypted with
two encryption layers. Every time a user needs to access an object in C, the server will simply
return the stored version of the requested object. Figure 2.3(a) illustrates container C, in Figure 2.2
after Bob has been revoked access to C;, when adopting immediate over-encryption.

Immediate over-encryption causes a considerable cost at policy update time, which is however
significantly lower than the cost that would be paid if over-encryption is not used. The advantage
of immediate over-encryption lays in its simplicity in the management of get requests by clients,
because objects will be returned by the server as they are stored. This approach can be an interest-
ing option in scenarios where policy updates are extremely rare and the overall size of objects is
modest.

On-the-fly Over-Encryption

The storing server applies over-encryption on-the-fly, that is, every time a user accesses an object.
Then, even if the owner of the container asks the server to over-encrypt the objects in C, the server
only keeps track of this request, but it does not re-encrypt stored objects. When a user needs to
access an object in C, the server possibly over-encrypts the object before returning it to the user.
Figure 2.3(b) illustrates the adoption of on-the-fly over-encryption when Alice accesses object 07,
after Bob has been revoked access to container C; in Figure 2.2. As it is visible from the figure,
the server over-encrypts o, with £°, which can be computed by Alice and Dave but not by Bob,
before sending the object to the requesting user.

When adopting on-the-fly over-encryption, keys can be managed according to the following two
strategies.

e Static key generation: the owner of the container defines, at revoke time, the SEL DEK
k® necessary to protect the objects in the revoked container C, and the KEKs necessary to
non-revoked users (and to the server) to derive k°.

e Dynamic key generation: the server generates a fresh SEL DEK k* for every get request
involving an object in the revoked container C. Also, it creates and makes available to the
requesting user a KEK enabling her to derive k°. At revoke time, the owner of the container
only needs to communicate to the server the container C subject to the revoke operation and
the revoked user.

In terms of performance, if the same user makes repeated requests for objects in the same con-
tainer (i.e., protected with the same DEK), dynamic key generation may require a greater amount
of work. On the other hand, if the number of requests for the objects in a container is significantly
lower than the number of KEKs produced by the static approach for the same container, the dy-
namic approach is more efficient. The profile of key management for the two alternatives presents
significant differences, but key management operations exhibit negligible computational and 1/O
costs compared to the management of the objects themselves. This is the reason why in the ex-
periments (Section 2.6), focusing on the overall object management cost, we do not distinguish
between static and dynamic key generation.

The advantage of on-the-fly over-encryption is that over-encryption is applied only when needed.
However, if an object is asked multiple times during a period when the policy is stable, the server
will incur a higher cost than immediate over-encryption, due to the multiple applications of encryp-

% ESCUDO-CLOUD Deliverable D2.3

Section 2.6: Experimental Results 25

tion on the same object. On-the-fly over-encryption can then be an interesting option in scenarios
where the ratio between accesses and revoke operations is low.

Opportunistic Over-Encryption

This approach aims at combining the advantages of both immediate over-encryption and on-the-
fly over-encryption. It presents a similarity with the Copy-On-Write approach commonly used by
operating systems to improve the efficiency of copying operations. Analogously to the immediate
approach, opportunistic over-encryption requires the owner, when a user is revoked access to a
container, to define both the SEL DEK £° necessary to protect the objects in the revoked container
C, and the KEKSs necessary to authorized users (and to the server) to derive k*. Similarly to the
on-the-fly approach, the server over-encrypts an object o; in the revoked container C only when it
is first accessed. However, instead of discarding it, the result of over-encryption is written back to
storage for future accesses.

The management of opportunistic over-encryption is more complicated than the approaches illus-
trated above. In fact, after multiple policy updates and object insertions, a container may include
objects associated with different BEL and SEL keys. Therefore, the object descriptor must specify
also its state (i.e., not over-encrypted, over-encrypted with the most up-to-date SEL key, over-
encrypted with an old SEL key). When a user needs to access an object o}, the server first checks
its descriptor. If o; is protected only at BEL and it has been subject to a revoke operation, the
server derives the most recent SEL key and over-encrypts o; on-the-fly, storing then the result. If
0; is protected also at the SEL with the most up-to-date key (or it is encrypted only at the BEL
and no revoke operation affected the container), it is returned to the requesting user. Finally, if
o; is protected at the SEL with an outdated key (e.g., because another revoke operation has been
performed after o; has been last accessed), the server decrypts o; with the old SEL key, re-encrypts
it with the new one, and stores the result. Note that KEKs enabling to derive old SEL keys can be
dropped from repositories only when no object is protected with those keys. Figure 2.3(c) illus-
trates container C, in Figure 2.2 after Bob has been revoked access to C; and Alice has accessed
object 0;. As it is visible from the figure, object o, is protected at both the BEL and SEL, while
04 is encrypted only at the BEL as it has not been accessed yet.

The critical advantage of opportunistic over-encryption is that it shows good adaptability to a
variety of scenarios. In some peculiar combinations of policy update frequency, size of data col-
lection, and access profile by clients, the other solutions may be preferable. However, based on
our experimental results, we expect that this solution will be preferred in the majority of scenarios.

2.6 Experimental Results

We discuss the experimental results performed for evaluating the practical applicability of our
proposal. We performed different series of experiments aimed at evaluating the following aspects:

o the benefits of the use of over-encryption compared to a system where policy changes are
enforced by the client downloading, re-encrypting, and re-uploading the objects involved
(Section 2.6.1);

o the performance of the immediate, on-the-fly, and opportunistic options (Section 2.6.2);

e the performance of a batch and a streaming option for the execution of encryption by the
server (Section 2.6.3);

% ESCUDO-CLOUD Deliverable D2.3

26 Secure Cloud Storage

30 . . : : : . . . 25

25 1 20l
x X x X

20 -

no over-encryption —<—
on-the-fly —e— |

E 15 opp. (a=1) g -
= direct get —=— = -
1.0 o«
10 LA -
o . o—s on-the-fly
///é x-%x immediate
osf o= opp. (a=1) |
5t - 3 Y- & -4 opp. (a=2)
a = Ke = = opp. (a=3)
// == oo
0 . 00 ‘ ‘ ‘ ‘
0 1 5 10 15 20 25 30 35 40 0 50 100 150 200 250
number of requests number of requests
Figure 2.5: Overhead of all the solutions Figure 2.6: Cumulative server work with differ-

ent over-encryption approaches

e the performance at the client-side for the removal of the two encryption layers for over-
encrypted objects (Section 2.6.4).

The experiments were executed on two PCs with Linux Ubuntu 16.04, 16 GB RAM, 4-core
17 CPU, 256 GB SSD disk. The client and the server were connected with a 100 Mb/s network
channel.

2.6.1 Comparison Between Client Re-Encryption and Over-Encryption

We compare different options of over-encryption with a scenario where a policy update on a con-
tainer is enforced by the data owner through the download, re-encryption and upload of the whole
container. For this set of experiments, we consider a container with 1000 files of size 1 MB. Client
side re-encryption does not require server work (except for the download and upload request,
which are the same in every scenario) and is necessary only for revocations.

Figure 2.5 compares the overall time required for the management of a policy update fol-
lowed by a number of get requests. The line on top corresponds to the configuration without
over-encryption. In the lower part, we have the lines that describe the time required when using
over-encryption, considering the on-the-fly approach and the opportunistic approach with uniform
distribution of access requests (corresponding to & = 1). We also report the time exhibited by the
management of a sequence of direct get requests, where no encryption is applied to the objects.
The graph shows that the lower lines are all one near to the other, proving that over-encryption has
a small overhead.

2.6.2 Analysis of Over-Encryption Approaches

We compare the performance of immediate, on-the-fly, and opportunistic approaches. For this set
of experiments, we consider a container with 100 files of size 1 MB. We focus on the time required
for the processing on the server module, without considering the time required for the transfer of
data across the network. This permits to focus on the component that is most influenced by these
options (the network is typically a bottleneck and it hides the difference between the approaches, as
shown in Figure 2.5). Figure 2.6 reports the cumulated execution time associated with a sequence
of requests, for the three over-encryption approaches.

% ESCUDO-CLOUD Deliverable D2.3

Section 2.6: Experimental Results 27

The immediate option requires, at policy update time, to read all the objects in the container,
possibly decrypt them, and encrypt and write them back. This creates an immediate overhead at
policy update, before the first request. Subsequent requests do not require a specific processing
by this module, which manages the get requests with a direct mapping to the retrieval of the
over-encrypted representation of the object. Figure 2.6 represents the immediate approach with a
horizontal line.

The on-the-fly option requires to apply SEL encryption on every returned object. The cost is
then identical for all the requests. Figure 2.6 shows that the on-the-fly option is associated with a
constant growth.

For the opportunistic approach, the cost depends on the number of files in the container that
are accessed more than once. When an object is accessed for the first time after the policy update,
the server will have to encrypt it at the SEL level and then save its new representation. This adds
to the encryption cost the cost for the storage of the new version. Subsequent requests for the
same object will be managed as a simple get of the over-encrypted representation of the object.
The frequency of repeated accesses has then an impact on the efficiency of this approach. In our
experiments, we therefore consider request profiles associated with power law distributions [24]
with varying values for the o parameter, from 1 to 4. A value of o equal to 1 corresponds to a
uniform distribution, where all the requests have an equal probability of asking any of the objects
in the container; increasing values of ¢ lead to an increasingly skewed distribution of requests.
The analysis shows that for the first requests the cost associated with the opportunistic approach is
greater than that of the on-the-fly approach. As requests continue to be executed, the opportunistic
approach becomes increasingly more efficient compared to the on-the-fly approach. The advantage
increases as the profile becomes more unbalanced. The worst case is represented by the uniform
distribution, which still becomes more efficient after 180 requests.

From this experimental analysis we conclude that the choice of the over-encryption approach
has to consider a few aspects. In terms of pure performance, the opportunistic approach always
dominates the immediate approach. The choice between the on-the-fly and the opportunistic ap-
proach has to evaluate the frequency of policy updates, the number of access requests generated
between each policy update, and the profile of access requests. For scenarios where policy updates
are relatively frequent compared to the frequency of access requests, and the profile is uniform,
the on-the-fly approach can be the most efficient solution. In these scenarios, a choice should be
made between the static and dynamic key generation. This choice will have to take into account
design and configuration aspects, with the static generation requiring a greater upfront processing,
but then more efficient computation, and the dynamic generation minimizing setup costs, but re-
quiring a DEK and a KEK creation for every access request. In domains with a profile opposite to
that leading to the on-the-fly approach, the opportunistic approach can prove to be the best option.

In addition to performance, there are design and security requirements that may have an impact
on the choice. In terms of design, the opportunistic approach requires a more complex procedure,
whereas the immediate and on-the-fly approaches both map to a simpler implementation. With
respect to security, the immediate approach (for all the objects) and the opportunistic approach
(for objects that have already been accessed since the last update) offer greater protection, because
a revoked user who may have access to the Swift storage infrastructure would not be able to access
the plaintext of the objects, whereas in the on-the-fly approach such an attack would succeed for
a revoked user. System administrators will then have to make a choice based on the consideration
of a number of parameters. Our expectation is that in most scenarios administrators will select the
opportunistic approach.

% ESCUDO-CLOUD Deliverable D2.3

28 Secure Cloud Storage

120
100}] T]
1.5¢
80+ F---N--- B T e . i T
—_ %
- = 1.0
o 60} Yr
E £
=)
40t
0.5
20t I Direct get || -
0 [Streaming } E AES+AES
[Batch i TwoOAES
T 0.0
0 1000 x 1IMB 100 x 10MB 10 x 100MB 1 x 1GB 1 2 3 4 5 6 7 8 9 10
files TWOAES window size [blocks]

Figure 2.7: Comparison of the overhead caused Figure 2.8: BEL+SEL encryption performance
by Streaming and Batch on-the-fly approaches on a 1MB file using two subsequent AES invo-
with respect to the direct get call cations and TWOAES

2.6.3 Streaming and Batch Encryption

We performed a set of experiments aimed at comparing the execution time of a number of get
requests when two different kinds of encryptions are used by the server: Streaming and Batch.
They both use the AES-CTR encryption mode. Streaming encryption makes use of the WSGI
structure of the Swift servers, and it consists in encrypting every chunk of the file as it is obtained
from the proxy server. On the contrary, Batch encryption consists in encrypting the whole file
after it is returned from the proxy server and before it is sent to the client. In these experiments,
files of the same size are inserted into a container, which has the total size of 1 GB. We studied
the benchmark of Streaming and Batch encryption applied to the on-the-fly approach against the
direct get call that does not apply any encryption.

As it is visible from Figure 2.7, compared to the direct get call, Streaming encryption adds
an overhead between 1% and 3%, whereas Batch encryption adds an overhead between 7% and
15%. 1t is then clear that Streaming encryption is more efficient, both because of shorter response
times and because it has a lower memory usage, since it does not have to load the entire object
in RAM before encrypting it. Note that the encryption of the chunks could also be parallelized,
further reducing the overhead compared to the direct get call.

2.6.4 Application of Two Encryption Layers

When over-encryption is used, the client has to decrypt the downloaded objects twice, using the
same encryption algorithm with two distinct keys. The simplest approach for the implementation
of these two decryptions consists in first removing the SEL layer on the full object and then
removing the BEL layer. Such an approach is not the most efficient option, because the portion of
the object that has been SEL-decrypted (and still BEL-encrypted) will have to either be temporarily
stored in RAM or on mass memory. This is similar to the analysis for Streaming and Batch
encryption for the server, where Streaming encryption proves to be more efficient.

We started from these considerations and investigated the joint application of SEL and BEL
decryptions. We were also interested in evaluating the performance profile of decryption on the
client and in evaluating the impact of the hardware support offered for the execution of crypto-
graphic functions. In particular, we verified the impact of the AES-NI (Intel AES New Instruction

¥y ESCUDO-CLOUD Deliverable D2.3

Section 2.6: Experimental Results 29

without AES-NI with AES-NI

ECB CBC CTR ECB CBC CTR

128 bits | 253 MB/s 215 MB/s 154 MB/s | 1857 MB/s 408 MB/s 284 MB/s

256 bits | 192 MB/s 170 MB/s 133 MB/s | 1301 MB/s 336 MB/s 248 MB/s

Figure 2.9: AES encryption rate for the modes ECB, CBC, and CTR using the pycrypto library
without and with AES-NI

" TWOAES ——

1000 r AES+AES —— |
800 |
600 |

400 -

200

double encryption rate [MB/s]

1 KiB
4 KiB
16 KiB
64 KiB
1 MiB
4 MiB
16 MiB
64 MiB
1 GiB

256 KiB
256 MiB

file size

Figure 2.10: Re-encryption using AES

set) instructions available on Intel processors. A first set of experiments, reported in Figure 2.9,
showed that the encryption performance of AES-NI compared to an AES software implementation
(we used the one available in OpenSSL) is around 7 times faster.

We then focused on the application of two decryptions. Our expectation was that the consecu-
tive application of a SEL decryption and BEL decryption on the same block would have produced
a benefit, as it would have avoided to pay the penalty of a transfer outside the CPU cache of the
data. As shown in Figure 2.8, where AES-NI instructions were used, we instead observed that
the performance of the interleaved decryption depends on the number of consecutive blocks pro-
cessed with each key. The worst performance is observed when after each block there is a switch
of encryption key. Further investigation allowed us to verify that the source of this behavior was
an optimization by the C compiler that avoided to execute a write to the registers storing the key
value when no changes had occurred to the key since the previous execution. When the switch
from the application of the SEL decryption to the BEL decryption occurs after a number of blocks,
the cost of the key setup is amortized over a number of blocks, but the blocks remain in the CPU
cache after the first decryption and the second decryption becomes more efficient.

We then compared the execution times for the (a) serial application of SEL and BEL decryp-
tion (a full SEL decryption, followed by a full BEL decryption) and (b) interleaved SEL and BEL
decryption, with the application of the two decryptions 8 blocks at a time. Figures 2.10 and 2.11
report the results of these experiments when not using AES-NI and when using AES-NI, respec-
tively. The greater performance of hardware-accelerated AES emphasizes the impact that the
CPU/RAM interface has on performance. Figure 2.10 indeed shows that the difference between
the two approaches when hardware acceleration is not used is limited. Figure 2.11 shows that the
20% benefit observed is persistent across objects with a variety of sizes.

This approach is then the one that has to be applied whenever two layers of decryption have to

% ESCUDO-CLOUD Deliverable D2.3

30

Secure Cloud Storage

1000 -

800

600 -

400

200

double encryption rate [MB/s]

TWOAES —— |
AESHAES ——

1KiB

4KiB

16 KiB

64 KiB

256 KiB

1MiB

file size

4 MiB

16 MiB
64 MiB
1 GiB

256 MiB

Figure 2.11: Re-encryption using AES-NI

be removed. It is also important to note that the throughput that can be obtained in the application
of two decryptions (a few GB/s) is orders of magnitude greater than the bandwidth available for
the network connections between a client and the Swift provider. This confirms the applicability

of over-encryption in this scenario.

¥y ESCUDO-CLOUD

Deliverable D2.3

3. Protection of Access Confidentiality

Traditionally addressed within the line of work of Private Information Retrieval (PIR) [34, 9]
(known to suffer from high computational complexity), access confidentiality has been recently ad-
dressed by several researchers aiming at more practical solutions, limiting computational overhead
and providing effective key-based retrieval capabilities. Among them, the more recent ORAM-
based solutions (e.g., [38, 39]) and the shuffle index [18]. A common aspect of these approaches is
the idea of breaking the otherwise static correspondence between data and the physical locations
where they are stored.

In this chapter, we propose a novel approach to provide access privacy. Our solution groups re-
sources in buckets according to a randomly and non-invertible mapping and associates non-order
preserving indexes with buckets, then organizing bucket indexes in a binary search tree. Such
bucketization and indexing provide fine support for key-based retrieval while protecting confi-
dentiality of original index values and their relationships. Like previous works, our approach
dynamically changes the allocation of buckets (i.e., nodes of the tree) to physical blocks at every
access, so to destroy the correspondence between data and physical locations. In addition to this,
our approach protects confidentiality by making accesses all look alike from the point of view of
the server, and continuously changing the logical organization of data themselves.

3.1 State of the Art

With the increasing interest in data outsourcing, many proposals have first been devoted to the
protection (of the confidentiality) of data in storage. Outsourced data are protected by wrapping a
layer of encryption around them, and query evaluation is supported through indexes (i.e., metadata
complementing the outsourced encrypted data) or specific cryptographic techniques for keyword-
based searches (e.g., [27, 42]). Recently, significant attention has been given to the problem of
protecting confidentiality of accesses. Current proposals are based on Private Information Re-
trieval (PIR) techniques or on dynamically allocated data structures, which change the physical
location where data are stored at each access (e.g., [34, 9, 38, 39, 18, 16, 17, 19, 11, 32, 44]). PIR
solutions are computationally expensive and do not protect content confidentiality (e.g., [34, 9]).

Dynamic data structures rely on the Oblivious RAM (ORAM) for protecting content, access,
and pattern confidentiality (e.g., [38, 39, 11, 44]), or on tree-based structures (e.g., [18, 16, 17,
19, 32]). While preliminary ORAM-based proposals suffer from high computational and com-
munication overheads, recent attempts make ORAM more practical in real-world scenarios (e.g.,
ObliviStore [38] and Path ORAM [39]), as illustrated in [6] where different ORAM-based ap-
proaches are compared.

Path ORAM based solutions [39] store data both at the server side and in a local cache (stash)
at the client side. The client also stores a position map (with size proportional to the number of
data blocks) that keeps track of where the data are stored. To reduce to one block the storage at

31

32 Protection of Access Confidentiality

the client, recent proposals move the stash from client to server and store the position map recur-
sively on the server in smaller ORAMs. These approaches, however, cause an increase in response
time and a bandwidth blowup of over two orders of magnitude in data exchange between client
and server [35]. To reach a constant bandwidth blowup, an additively homomorphic encryption
construction can be used to perform server computations (i.e., 0(log4 N), where N is the number
of outsourced data blocks), but at the cost of an increased computational effort for the client (i.e.,
O(log*N)) [20].

Our approach applies only efficient symmetric encryption primitives and has limited band-
width blowup and client storage capacity (O(logN) blocks) as well as lower computational re-
quirements (O(logN)) at the client side.

Solutions that rely on tree-based data structures provide a good trade-off between privacy and
performance (e.g., [18, 16, 17, 19, 32]). Among them, the shuffle index has first been proposed
in [16]. A shuffle index is a dynamically allocated B+-tree offering access and pattern confi-
dentiality, while supporting efficient key-based data organization and retrieval. To protect access
and pattern confidentiality, the B+-tree is stored at the server side in encrypted form and jointly
uses cover searches (fake searches indistinguishable from actual searches, executed in parallel),
cache (most recent visited target paths), and shuffling for protecting the confidentiality of accesses
(corresponding to physical re-allocation). The shuffle index has then been extended to support
concurrent accesses by different users [17], to operate in a distributed scenario characterized by
the presence of multiple (three) storage servers [19], and to support insertion and removal of tuples
in the outsourced relation [18]. The main differences between the shuffle index and our solution
is that they are based on different protection techniques and, in particular, the shuffle index does
not change the logical tree structure but relies mainly on shuffling. Also, our proposal does not
require any client-side storage.

3.2 ESCUDO-CLOUD Innovation

The main innovation of this approach compared to previous solutions is that it does not require
to store data at the client. Both the shuffle index [18] and ORAM-based solutions [38, 39] re-
quire instead to maintain a local cache and a local map and stash, respectively. We note that
while ORAM-based solutions allow also the storage of the local map and stash at the server side,
this solution yields a bandwidth blowup of at least two orders of magnitude compared with an
unprotected solution [35].

Besides not requiring the client to commit storage, being stateless for the client, our approach
supports access by multiple clients. Compared with the shuffle index, in addition to dynamically
changing physical location of data (as the shuffling does), we also change the logical structure
adding a further level of confusion with respect to observables by the server.

Compared with ORAM [38, 39, 35], in addition to providing good reliability guarantees (being
resilient to client failures, as all resources are always stored at the server in a complete and consis-
tent way), we enjoy satisfactory performance figures. Considering that the main service provided
by data outsourcing applications is the durable and reliable storage of data, our approach keeps
the state of the system safely stored on the remote server. Hence, our solution fits well within the
replication, backup, and migration mechanisms adopted by any storage back-end application to
cope with software or hardware failures during the system lifetime.

% ESCUDO-CLOUD Deliverable D2.3

Section 3.3: Overview of the Approach 33

3.3 Overview of the Approach

The goal is to protect access privacy against any possible observer. Since the most powerful ob-
server is the storing server itself, without loss of generality, we assume the server as the observer.
Our approach to provide access privacy is based on a combination of techniques that avoid caus-
ing, in access execution, observables that can be exploited by the server to learn information about
the access. A first level of protection is therefore represented by our storage organization, which
provides key-based retrieval functionality, while leaving content not intelligible to the server. Our
storage organizes data in buckets, then defines an index key and a binary search tree for it to
support efficient retrieval without exposing any information on the original values. Content is
encrypted client-side before upload. Hence, the server receives from the data owner a set of en-
crypted blocks to store, and serves requests accessing them. The application of encryption and the
fixed size of the blocks ensure confidentiality in storage of the blocks content with respect to the
server.

Like other works in this area [18], our approach makes the data structure dynamic (re-
allocating nodes in blocks at every access) to destroy the otherwise static correspondence between
nodes and blocks where they are stored. In addition to this, we also re-arrange the tree structure
itself, thus introducing a further level of protection, and making every access to the data structure
uniform (independently of where the actual target of a search is located in the tree). The building
blocks of our solution are as follows.

Uniform accesses (Section 3.5). All accesses download from the server the same (constant) num-
ber of blocks, regardless of where the target is located. Blocks not pertaining to the target path are
not recognizable as such. This permits to hide the block storing the target among all the accessed
blocks.

Target bubbling (Section 3.6). At every access, the target node is moved up in the data structure
by means of rotations, also causing a re-arrangement of the data structure. The main motivation
for bringing the target up in the tree with re-arrangement of the data structure is that a subsequent
(or close) search for the same node will not follow the same path in the tree.

Speculative rotations (Section 3.7). At every access, possible re-arrangements (rotations) can
be enforced at the logical level that control the depth of the (sub-)trees. The reason for this is
to maintain the height of the tree to be at most twice the height of the balanced tree, that is,
2|log(|N])]. While not a protection technique per se, rotations also bring protection benefits,
since they cause a change in the topology of the tree structure.

Physical re-allocation (Section 3.8). At every access, all the accessed nodes are allocated to
different physical blocks. Re-allocation also entails re-encrypting nodes with a nonce (i.e., an
always distinct random salt) so to make the nodes indistinguishable and re-allocation not traceable.

3.4 Data Organization and Storage

The data outsourced are assumed to be generic resources identified by an index value for the
search. For instance, with reference to a relational database, resources are tuples in a relation and
the index is the primary key of the relation. For outsourcing, we organize data in a binary search
tree. To support efficient key-based (traversal and) retrieval while protecting the ordering among
index values: i) each node is a bucket containing up to Z real resources, and ii) index values are
mapped into bucket indexes (with which the tree is organized) in a non-order preserving way.
Bucketization permits to limit the height of the tree, and therefore the length of search paths. Non-

% ESCUDO-CLOUD Deliverable D2.3

34 Protection of Access Confidentiality

E oo..OA 0| B 2 0| «6p®
: oo..oB G 11D 1| Smwn
O oo..o0|C e G 2l A 2|as0on
oo..olpD 3| F - 3| dewk
O 0
g oo.. ol 0 Qo 4C5 4| kpd9
1
0 oo.. ofF 5E3 5| Apde
resources buckets binary search tree allocation storage

Figure 3.1: Data structure construction and its physical representation

order preserving mapping protects the order relationship among the content of the nodes involved
in a tree traversal (which could otherwise be leaked). We do not make any assumption on the
mapping of original indexes to bucket indexes as long as such mapping: i) is non invertible (to
avoid reconstructing the original index knowing the bucket index), ii) does not require storing any
explicit map at the client (i.e., it is simply a function that can be computed at run-time), iii) is not
order-preserving (so to protect the order relationship among original indexes), and iv) resources
are well distributed among the nodes (to have all nodes indistinguishably of the same size, nodes
with fewer resources are padded with dummies, whose occurrences should be kept limited). A
simple approach to provide such a mapping consists in applying a pseudo-random function on the
original index values and mapping to the same bucket the pseudo-random values with the same
value for a given number of most significant bits.

At the physical level, each node is stored in a physical block in encrypted form. The allocation
function ¢ : N — ID randomly maps each node to the identifier of the physical block where it is
stored. Pointers between nodes are represented, at the physical level, by storing in each internal
node the identifiers of the blocks storing its children. The content of a block storing a node is
obtained by first encrypting the concatenation of the node’s content with a random salt to destroy
plaintext distinguishability, and then concatenating the result with the output of a MAC (Message
Authentication Code) function applied to the encrypted node and the block identifier. Formally, the
block content is computed as b=Enc||Token, with Enc=E (salt||n.k,.) and Token=MAC(id||Enc,ky,)
where E is a symmetric encryption function with key k., salt a randomly chosen salt, and MAC a
strongly unforgeable keyed cryptographic hash function with key k,,. In this way, the client can
assess the authenticity of the node returned by the server as well as of the whole data structure,
thanks to the presence of pointers to children in each internal node.

Figure 3.1 summarizes the data structure construction (bucketization, tree definition, alloca-
tion) and its physical representation. At initialization time, we assume the tree to be balanced, and
hence with height [log(|N|)|. In the following, we use the term node to refer to an abstract data
content and block to refer to a specific memory slot in the physical structure. When either terms
can be used, we will use them interchangeably. Having noted that each node in the binary search
tree contains several resources and the ordering of indexes of the tree does not leak any informa-
tion on the ordering among original index values, from now on we will explain our techniques
with reference to the binary search tree and its index.

% ESCUDO-CLOUD Deliverable D2.3

Section 3.5: Uniform Accesses 35

3.5 Uniform Accesses

Without the application of any protection technique, access execution and server’s observations
would be as follows. To access the node (which from now on we will call farget) containing a
sought value, the client performs an iterative process, retrieving first the block containing the root
node, and iteratively determining the child to retrieve the next node until the target one is reached.
The observation of the server would then be a sequence of requests of block downloads. Serving
an access, the server can observe the blocks in the path to the target and the block storing the tar-
get (which is the last one downloaded). Since node indexes and their parent-child relationship do
not convey any information on the original index values (or their relationship), a path observation
does not cause a problem per se. However, accumulating exact knowledge on target nodes and
observing multiple searches, the server could observe or infer possible access patterns, as well
as - combining observations with possible knowledge of frequencies of accesses to real values -
eventually breach access (and even content) privacy.

The first level of our protection aims at preventing the server to observe (and accumulate) ex-
act information on the target of a search. To this end, we make accesses all look alike from the
point of view of the server, and perform searches in the tree always accessing the same number of
nodes (and hence blocks at the server), regardless of where the target is located in the tree, be it the
root or the deepest leaf. Setting the (constant) number of nodes to be accessed at every search, we
need to ensure it is sufficient to reach any target, that is, it can cover the longest path in the tree. In
a search tree, the number of nodes in the longest path can go from a minimum of [log(|N|) |+ 1
(balanced tree) to a maximum of |N| (tree degenerated in a list). Aiming at balancing some degree
of freedom in the data structure (which we dynamically re-arrange at every access) while avoid-
ing degeneration, we set a limit on the height of the tree to be at most 2|log(|N|)] (Section 3.7
illustrates enforcement of such a limit), which is a well recognized performance trade-off between
the height of a perfectly balanced tree (|log(|N|)|) and the amortized height of an unbalanced
tree with the target bubbling mechanism in place (3|log(|N|)] —2) [37]. The longest path in our
data structure can therefore require to access at most 2|log(|N|) | 4+ 1 nodes. Also, we assume the
children of the root to always be read. Hence, we set the constant number of nodes to be read at
every access to 2|log(|N|) | +2. If, as it will typically be the case, the number of nodes in the path
to the target plus the other child of the root (meaning the one not in the path to the target) do not
reach 2[log(|N|)| 4+ 2, we complement the access with other nodes, which we call fillers. (The
reason for assuming both children of the root to be always read is to accommodate flexibility in the
choice of indistinguishable fillers.) Every access request will always be translated into a sequence
A= (ni,...,ny), with m =2[log(|N|) | + 2, of accesses to nodes (corresponding to blocks for the
server).

In choosing fillers, we need to ensure their indistinguishability from nodes in a target path. In
this case, from the point of view of the server, any of the m nodes accessed could correspond to the
actual target of the search, others being nodes in the path to the target or fillers, all indistinguish-
able one from the other. In this respect, choosing fillers just at random at any place in the data
structure would not provide such a characteristic, as being completely unrelated in the structure,
they could be recognizable as fillers. In fact, while (as we will see later on) we prevent the server
from accumulating topological information across accesses, the server can observe a sequence of
blocks accessed where a sequence of never-downloaded blocks is followed by a sequence of blocks
intersecting with a previous search. This situation would expose the blocks in the intersection as
fillers (a path is always connected, hence their occurrence after the never-downloaded blocks im-

% ESCUDO-CLOUD Deliverable D2.3

36 Protection of Access Confidentiality

(a) (b)

Figure 3.2: Two sample accesses

plies that they cannot belong to the path). A possible natural choice of selecting fillers at random
wherever in the tree could then make them, or others following them in the sequence, recognizable
as fillers. To avoid exposing accesses to such intersection attacks, we (randomly) choose fillers in
such a way that they are connected to the paths (either target or fillers) being followed in the tree
(i.e., a node can be accessed only if its parent has been) and always proceed forward in levels in
the tree (i.e., the node visited next in the sequence cannot have a level lower than the one visited
before it). Selecting fillers so that they are connected to nodes already accessed (path continuity)
and with monotonically non-decreasing levels (forward visit) avoids possible intersection attacks
from the server, guaranteeing fillers to be indistinguishable from a genuine path to a target.

Definition 3.5.1 (Uniform access) Let T be the data structure. A sequence A = (ny,...,ny) of
nodes in T is said to be a uniform access iff> 1) m = 2[log(|N|) | 4 2 (constant number); 2) ¥n; €
A :nj € path(n;, T) = nj € A (path continuity); 3) level(n;, T) < level(ni11,T), i=1,...,m—1
(forward visit).

Ensuring forward visit requires to ‘think ahead’ for the need of fillers, to avoid being blocked
in a situation where there is no node that can be accessed at a level equal to or higher than the
last one visited, but fewer than m = 2|log(|N|)] + 2 nodes have been accessed. An easy way to
avoid ending in such a situation consists in keeping track, in each node, of the number of nodes in
the longest path of its children (i.e., for each of them, their height plus one), and, when perform-
ing searches, of the number of nodes to be still read to reach the fixed number 2|log(|N|)] + 2.
Searches can then be performed level by level (forward visit). After having read the root and its
children, we choose, in addition to the node to the target, one or more filler nodes, children of a
node read at the previous level (path continuity), such that the sum of the number of nodes in their
longest path is greater than the difference between the number of nodes to be still read and the
maximum length of the path to the target. If a target is retrieved at level /, the search (at that and
subsequent levels) continues with filler nodes only. The nodes to be accessed at each level in the
tree are downloaded in sequence and in random order, to prevent the server from identifying how
many blocks are accessed at each level and which of them is along the path to the target.

Figure 3.2 illustrates two possible accesses on a sample data structure with 26 nodes, which
then requires to visit 10 nodes at each access. Nodes involved in the access are circled with solid

% ESCUDO-CLOUD Deliverable D2.3

Section 3.6: Target Bubbling 37

p(x.T) @
N
%

T: T;

p(»T)

@T o1’
Figure 3.3: Tree rotations

lines and the numbers at their side represent the order in the sequence of requests to the server. In
both accesses, any of the nodes could be the actual target or a filler. Also, the two accesses, while
visiting different nodes, could actually correspond to a search for the same target (e.g., B).

3.6 Target Bubbling

Our second protection technique aims at hiding from the server subsequent (or close) searches for
the same target. Even with fillers, such searches would necessarily contain the same path, and this
situation could be easily observed by the server that would see access to the common sequence of
corresponding blocks. For instance, any search for R in the tree in Figure 3.2 will visit nodes M,
0, Q, W, U, S, R and 3 filler nodes (one of which will always be G), accessing the corresponding
blocks. Observing accesses that visit 8§ common blocks, the server can reasonably infer that the
accesses are for the same target with high probability. The longer the common sequence, the
higher the probability that the target of the two accesses is the same. To protect against such
intersection attacks, our second technique simply dictates to bubble the target of a search up in the
tree, so that at the end of the access, the target appears at the top of the tree (regardless of where it
was before the search). A subsequent search for the same target (repeated search) would find the
target high in the tree, then randomly proceeding following filler nodes. This would result in an
access retrieving a set of blocks different from the previous one, hence appearing to the server as
a search for a different target. A repeated search would then not be recognizable as such by the
server.

In choosing where to move the target up in the tree, we note that placing the target in the root
would seem the best choice for protecting repeated subsequent searches (as any search always
accesses the root anyway). This would possibly expose recurrences of the same target at a fixed
distance. In fact, after a sequence of all different searches (each aiming at a different target), the
target of the m-last search would be at level m in the tree (having first been placed in the root and
then moved down m times to accommodate the bubbling of the subsequent targets), and the server
could exploit such a knowledge to make inferences on the target of the access. While noting that,
thanks to the synergy with the other techniques of our approach, this situation would not be that
deterministic, to the aim of avoiding any determinism in the first place, we move the target up in
the tree choosing the (high) level at which to place it at random. We then assume a level fop (which
we expect to be typically 1 to 3) above which the target should be placed. At every access, the new
tree level at which the target should be placed is randomly chosen between 1 and the minimum of
top and the current level of the target (a target is never moved down).

% ESCUDO-CLOUD Deliverable D2.3

38 Protection of Access Confidentiality

(a) accessed nodes and target bubbling (b) speculative rotations (c) resulting tree

Figure 3.4: Nodes downloaded to access U and rotations performed to bubble up the target (a),
tree with the target bubbled to the root and speculative rotations (b), and the resulting tree (c)

Moving the target up in the tree at the desired level is realized by applying classical single tree
rotations of binary search trees. A rotation essentially swaps the child-parent relationship between
a node and its parent, placing the node at the level of its parent and making the parent a child of
the node (right if the node was the left child of its parent and vice versa). We denote the rotation of
anode ninatree T as p(n,T). Figure 3.3 illustrates the result of such rotations, where tree 7’ in
Figure 3.3(b) is the result of rotation p(x,T) and tree T in Figure 3.3(a) is the result of p(y,7’). In
the figure, we single-out only nodes directly involved (x and y), representing the remaining ones
as sub-trees (71, 1>, T3). Formally, a tree where the target has bubbled up is defined as follows.

Definition 3.6.1 (Bubbled Target) Let T be the data structure, n be a target node, l=level(n,T)
be its level before the access, and I' < | be the new level at which the target should be
placed. The data structure T' equivalent to T where the target has bubbled up is T' =
p(n,(p(n,...(p(n,T))))), with level(n,T') = ', obtained by recursively applying a sequence of
" — 1 rotations.

For instance, Figure 3.4(a) illustrates the nodes accessed by a search for U. The target is double
circled, nodes in the path to the target are colored, and white solid nodes are fillers. Curved arrow
on arcs show the rotations to bubble the target to the root level, swapping U with (in sequence) W,
Q, O, and M. Figure 3.4(b) shows the resulting tree.

As already noted, since at each access the target is moved up in the tree, the targets of recent
accesses will be located high in the tree (close to the root), while nodes that have not been accessed
since long time will be at deeper levels in the tree (close to leaves). This is due to the fact that
rotations that bubble up the target change the level of the other nodes in the top levels of at most one
(up or down), and therefore it takes a few accesses for a high (or raised high) node to move down
in the tree (e.g., the root node in Figure 3.4(a) becomes the left child of the root in Figure 3.4(b)).
We also note that repeated accesses to a same target keep it in the top levels of the tree. This
provides protection of repeated searches, since all such accesses, following random filler nodes in
the tree, will look all different. We also note that bubbling the target with a recursive sequence of
rotations causes changes in the topology of the tree, adding confusion to the server.

3.7 Speculative Rotations

Bubbling up the target after each access causes a natural re-organization of the tree. Because of
rotations, at each access the height of the tree can increase (or decrease) of one. A long sequence of
accesses can then potentially unbalance the tree structure. To ensure that any node can be reached

% ESCUDO-CLOUD Deliverable D2.3

Section 3.7: Speculative Rotations 39

via a uniform access, we need to maintain the height of the tree to be at most 2|log(|N|)]. To
this end, at every access, we consider nodes involved in the access in decreasing order of level in
the tree, and, for each node, we evaluate whether its rotation can shorten some paths in the tree.
Intuitively, rotation p(n;, T) decreases the length of the path reaching one of the children of n; by
one, while increasing by one the length of the path reaching n;’s sibling, say n;. For instance, with
reference to Figure 3.3, rotation p(x,T') shortens of one the length of all paths ending in 7} and
increases of one the length of all paths ending in T3 (the contrary happens for rotation p(y,T")).
It is then easy to see that rotating n; is potentially beneficial to shorten (or maintain limited) the
height of the tree every time the height of the subtree rooted at n; is greater than the height of the
subtree rooted at its sibling n; of at least two.

Definition 3.7.1 (Beneficial Rotation) Let T be the data structure, n; be a node in T, and
n; be its sibling. Rotation p(n;,T) is beneficial to possibly keep the height of T limited iff
height(n;, T)>height(n;,T) + 1.

For instance, the beneficial rotations that are performed over the tree in Figure 3.4(b), resulting
when bubbling up the target, are p(C,7T") and p(Q,T). Enforcing them results in the tree of Fig-
ure 3.4(c). Note how rotating C decreases the length of the paths to D and F, decreasing also of
one the height of the tree itself. Note also how the topology of the tree has changed with respect
to the tree before the access (Figure 3.4(a)).

A beneficial rotation does not guarantee to reduce the height of the tree, but it can shorten sub-
trees, hence avoiding later degeneration of the structure. At every access, we evaluate whether
rotating accessed nodes would be beneficial and, if so, we perform such speculative rotations.
This occurs regardless of the height of the tree, to also try to avoid reaching a length close to our
limit of 2|log(|N|)|. As only exception, we never perform rotations on direct children of the tar-
get (or of one of its ancestor) as this would decrease the level of the target (which should instead
remain at the level where it was bubbled up). For instance, considering the tree in Figure 3.4(b),
even if rotation p(M,T) is beneficial, it would move the target to a lower level. In our example, the
height of the tree resulting from the application of speculative rotations (Figure 3.4(c)) is 5 while
the height of the tree before access (Figure 3.4(a)) was 6.

Typically, simply performing beneficial rotations at every access allows maintaining the height
of the tree within our aimed maximum of 2|log(|N|)]. In the unlikely case (one over 3,000 in our
experiments) where after such speculative rotations the tree height is 2|[log(|N|)| + 1 (given our
control it can certainly never go higher than that at any access), a further pass of rotations can be
performed.

An additional advantage of our speculative rotations is related to the protection of access pri-
vacy. In fact, a rotation swaps the parent-child relationship between the rotated node and its parent,
also changing the parent of one of its children (see Figure 3.3). Therefore, rotations change the
topology of the tree, modifying search paths for some nodes. Since the topology changes at ev-
ery access, the server cannot accumulate knowledge on it. We note that accommodating different
topological structures is also the reason why we do not aim at maintaining the tree perfectly bal-
anced (as the structure would have less degrees of freedom), and set instead - was a trade-off - our
height limit to be twice the height of the perfectly balanced tree.

% ESCUDO-CLOUD Deliverable D2.3

40 Protection of Access Confidentiality

00 00-13 00 00|BY [#@[01 00|mu|#m |01
- — 02 yt {u |03 02| y1 | 7u |03
04/G g7| 0419 04/C 04/Zy| eh[05 04/ky|@v|05
15 02
05/U o] 0512 05|W 5, 061+-Q|ew|07 06/+Qlew|07
ofc | e 12Ul 08|p$ [pI'|09 08| p$ |pI" 09
- 10[er [qA[11 10| er |qAll1
13[M 5| 13215 13|R 4 &
= = 12|tw|0p|13 12|ra| T [13
14|W S 1405 14|B -
o0 o 14|ev |an|15 14|Eg|EY |15
15[5| 1524 15|M _ :
- 16| &j |ea|17 16| §j |ec |17
1910 gi 1925 19| G 8‘; 18| fA [kw|19 18| fA | nj (19
g 202y [ABP1 20|y [AB]1
09 13
241Q | 2400 24S 2|ps|ovj23 22/ps|ev23
16 01
25|B ;| 2514 25/0 24|vE |25 24/6B |kv]25
(a) () ©)

Figure 3.5: An example of physical re-allocation (a) and of view of the server before (b) and after
(c) the access in Figure 3.4

3.8 Physical Re-allocation

Enforcing rotations to bring up the target and shorten paths changes the logical organization of the
tree. As noted, such a change in topology provides some protection since it changes the location
of nodes and therefore paths to be followed to reach them. Still, since the tree is a search tree,
even if topology changes, strong commonalities can remain even after rotations. For instance, a
rotation reverses a parent-child relationship between two nodes n; and n;, but still the two will
remain connected. A sequence of rotations can bring more changes, but still common sub-paths
may remain. The fact that the server can infer the path followed to reach a given node is not an
issue per se since, as already noted, the index on which the tree is organized does not convey
any information on the original index values and their relationships. However, if the server can
maintain such a knowledge across the accesses, it can potentially reconstruct the topology of the
tree and observe paths in common between different accesses, hence possibly learning information
on an access.

We note that the server only observes accesses to blocks (not nodes) and that the parent-child
relationship is (partially) known to the server since the access is iterative: a block will be child of
one of the blocks accessed before. The uncertainty of the parent-child relationship comes from
the fact that more nodes can be accessed at any level of the tree (since in addition to the target,
also filler nodes will be followed). The (i — 1)-th block accessed in an access sequence could be
a parent, an uncle, a brother or even not be in a direct relationship with the i-th accessed block.
For instance, in the sequence of nodes A=(M,0,G,Q,B,W,C,U,S,R) (Figure 3.4(a)) accessed to
retrieve U, M is the parent of O, O is the sibling of G, G is the uncle of Q, Q is not in relationship
with B. However, such uncertainty cannot provide protection from a server observing common
blocks among sequences of accesses. To prevent the server from accumulating information on the
topology of the tree, we destroy such information by re-allocating all nodes involved in an access
changing their physical location (i.e., changing the blocks where they are stored). At the physical
level, and therefore from the point of view of the server, topological information is destroyed. A
block id; that contained the child of another block id; before an access can now contain a node

% ESCUDO-CLOUD Deliverable D2.3

Section 3.9: Analysis and Experimental Evaluation 41

appearing in a completely unrelated path that might even have only the root in common with the
path to id;, or be the root itself. A subsequent access visiting the same block id; might (and most
probably will) pertain to a completely different path in the tree. In other words, with re-allocation
the (even uncertain) information on relationships among blocks that can be observed in an access
will not hold anymore after the access is completed, preventing knowledge accumulation by the
server. The physical re-allocation of nodes is formally defined as follows.

Definition 3.8.1 (Re-allocation) Let T be the data structure and Vn; € T, id; = ¢ (n;) be the iden-
tifier of the physical block storing n; before the access. Let A be the nodes involved in an access
execution and T : ID4 — ID4 be a random permutation of ID4 = {¢(n) : n € A}. Re-allocation
changes the allocation function § for all n; € A to be ¢ (n;) = nt(id;).

Re-allocation entails moving a node to a different physical block (or leaving it at the same position
if so dictated by the permutation). Re-allocation requires to re-encrypt the node with a different
random salt. All blocks accessed will be rewritten and will all look different from any read block.
The server will then not be able to learn any information on the re-allocation process and, in
particular, will not be able to trace where the former content of a block might have been re-
allocated. We note that, at the physical level, re-allocation also requires to update the parents of
the re-allocated nodes, to guarantee the correct representation of pointers to children (and then the
correctness of the tree structure). This is not an issue since the path continuity guaranteed by the
access (Definition 3.5.1) ensures that the parent of every node involved in the re-allocation is also
involved in the same re-allocation (and therefore it is available to the client for content update and
re-writing). Figure 3.5(a) illustrates the original content of the blocks accessed by the search in
Figure 3.4, an example of their physical re-allocation, and their content after its application. In the
figure, we report in each node its index value and the identifier of the blocks storing its children
(symbol — denotes the absence of the child). The block identifier is reported on the left of each
block. Figures 3.5(b-c) illustrate the server view before (b) and after (c) the access, where blocks
downloaded/uploaded are colored.

Thanks to the fact that every node is moved to a different untraceable physical block every time
it is accessed, re-allocation prevents the server from determining whether two accesses visited a
same node (or sub-path). Hence, the server will not be able to reconstruct the frequency of accesses
to nodes by observing accesses to physical blocks. Indeed, accesses that aim at the same target
(or visit the same path in 7") will access a different set of physical blocks. Furthermore, since re-
allocated nodes belong to different paths and are located at different levels in the tree, re-allocation
also destroys information the server could have gained on the topology of the tree by observing
the sequence of accessed blocks/nodes. In fact, a block storing a node at level i in the tree might
contain after the access a node in a completely different path and at a completely different level.

3.9 Analysis and Experimental Evaluation

To assess the access privacy provided by our approach we need to evaluate the indistinguishable-
ness of accesses or - put another way - the degree of confusion on the accesses to the server. To this
end, we start noting that the physical re-allocation employed by our approach can be compared
with the physical re-allocation of the shuffle index [18] (it is actually stronger). In particular, the
shuffle index re-allocates the logical nodes accessed on disjoint physical paths of its tree structure
on a per-level basis. The entropy-based analysis used to show the soundness of such a mechanism
in obfuscating the mapping between nodes and blocks applies also to our approach. In addition,

% ESCUDO-CLOUD Deliverable D2.3

42 Protection of Access Confidentiality

16 Maximum

14 + T (

Minumum

Profile 50-50 Profile 80-20 Profile 90-10

Figure 3.6: Average height of a tree with 256 nodes, considering 500,000 accesses

our approach enjoys even stronger guarantees than the ones proved in [18]. Indeed, the shuffle
index changes physical location of only a limited set of nodes and operates only within level of
the logical structure, while our approach changes the allocation of all nodes involved in an access,
operating also across levels, hence producing a complete re-allocation of the whole set of accessed
nodes. With respect to short-term observations (protected by the cache in the shuffle index) our
approach, bubbling the target at the top, is clearly protected since repeated accesses are indistin-
guishable, as already noted. Enjoying such theoretical analysis and observations, which apply also
to our solution, we then performed an experimental analysis on our approach. We evaluated how
and to what extent our proposal hides to the server the correspondence between nodes and blocks
where they are stored. We implemented our approach in Java and evaluated: i) how the height of
the data structure can vary; ii) the effectiveness of rotations in protecting access privacy; iii) the
degree of obfuscation of the actual paths observed by the server at every access request due to the
physical re-allocation.

In our analysis, we used a data structure with 256 nodes and a height ranging from 8 to 16. We
simulated different access profiles by synthetically generating a sequence of target index values
that follow a self-similar probability distribution with skewness 7 in the range [0, 0.5]'. A value of
Y=0.5 generates a sequence of values that follows a uniform probability density function. In par-
ticular, the results of our experimental evaluation have been obtained executing 500,000 accesses
for target values drawn from three self-similar distributions [26] with y=0.5 (50-50 rule), y=0.20
(80-20 rule), and y=0.10 (90-10 rule), respectively.

Data structure. Figure 3.6 shows the average height of the tree for the different access profiles.
As visible from the figure, the average is around 1.5k (with h=|log(|N|)] as a baseline), with a
sample standard deviation of 1. Hence, the data structure maintains itself within the set limit, also
nicely providing rooms for fillers in the search. Since the height of the tree dictates the number of

!Given an index domain of cardinality d, a self-similar distribution with skewness ¥ provides a probability of 1—7y
of choosing one of the first Yd domain values; the same proportion holds when considering any sub-range of the domain
values.

% ESCUDO-CLOUD Deliverable D2.3

Section 3.9: Analysis and Experimental Evaluation 43

40000 40000
e le

38000 38000

36000 e
34000 —_“-.\

36000 [

34000

32000 32000

average length of longest prefix match

0 30000 30000
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

node identfiers rank of block identifiers rank of block identifiers

(2) (b) ©

Figure 3.7: Average length of the maximum common prefix among the paths reaching the same
target (a) and rank/frequency distributions of the block identifiers corresponding to self-similar
access profiles with y€{0.5,0.2,0.1} when only the physical re-allocation (b), and when all pro-
tection techniques are applied (c)

client-side interactions that would be needed to access the data structure (following a path in the
tree), we note that, requesting a constant number of accesses, our solution exhibits a x2 overhead
with respect to an encrypted binary tree (i.e., an encrypted binary tree that still requires the client
to visit the tree level-by-level), which however would provide no access privacy protection at all.
Effectiveness of rotations. To evaluate the effectiveness of rotations (target and speculative bub-
bling) for protecting access privacy, we analyzed the average length of the common prefix paths
to a common target in sequences of subsequent accesses. Figure 3.7(a) shows the results of such
an analysis, where the x-axis reports the node identifiers in ascending order, and the y-axis reports
the average length of the common prefix. It is interesting to note that the reported average value
for the maximum common prefix of the logical paths aimed at the same target is around one third
the average height of the tree (Figure 3.6), implying that rotations largely change the topology of
the data structure. Also, if the statistical distribution of the target values is highly skewed, only
a few values will be accessed for serving most of the access requests. The two spikes in Fig-
ure 3.7(a) confirm that our approach keeps as near as possible to the root the most recently (and
frequently) accessed nodes, thus being effective in making subsequent accesses to the same target
indistinguishable from random ones.

Path obfuscation. The experimental evaluation validates the ability of physical re-allocation in-
volving all accessed nodes to provide indistinguishability of the profiles of the accesses to the data
structure. Figure 3.7(b) shows the rank/frequency distribution of block identifiers observed by the
server when only physical re-allocation is applied. The figure shows that the physical re-allocation
alone is already able to make skewed frequency distributions of the accesses to the blocks quite
close to the one corresponding to a flat access profile.

Combined protection. The small differences among the curves in Figure 3.7(b) are a consequence
of the information leakage coming from the observations of the blocks shared by different access
requests. Such differences disappear thanks to the contribution of rotations. This is visible in
Figure 3.7(c), showing the rank/frequency distribution of block identifiers observed by the server
during the execution of access requests when all our protection techniques are applied. The figure
validates our approach to preserve access privacy as it shows how the proposed techniques make
skewed frequency distributions of accesses to the blocks statistically indistinguishable from the
one produced by a uniform access profile.

% ESCUDO-CLOUD Deliverable D2.3

4. Scalable Distributed Key Management for
Cloud Storage

As use of cryptography is increasing in all areas of computing, managing keys in distributed
systems has to be solved efficiently. Large deployments in the cloud can require millions of keys
for thousands of clients. All current approaches to cope with this problem are centralized key
managers which do not scale out as necessary.

This section reports on the realization of a key manager which uses an untrusted distributed
key value store (KVS) for consistent key distribution over the Key-Management Interoperability
Protocol (KMIP). To achieve confidentiality, we use a key hierarchy where every key except a root
key itself is encrypted by the respective parent key. The hierarchy also allows for key rotation and,
ultimately, secure deletion of data.

The prototype was integrated with IBM GPFS, a highly scalable cluster file system, where it
serves keys for file encryption. Linear scale-out was achieved even under load from key updates.
Concerning performance, the throughput and latency is bounded by the TLS-handshake procedure
and the performance of the distributed KVS.

4.1 State of the Art

Encryption plays a fundamental role in realizing secure computing environments. Unlike classical
systems, cloud-scale distributed installations pose additional challenges. Especially key manage-
ment has to cope with their increased complexity and ensure reliable and secure distribution of
keys to many legitimate clients, which are then able to encrypt files or establish secure network
communication. Most encryption schemes take a secret key and the data as input and transform
this into a ciphertext. The ability to decode the ciphertext back to its original plaintext is dependent
on the encryption algorithm and on the used key. Algorithms used for encryption are standardized
results of a public revision process. The aim is to make the security of the system depend only on
the knowledge of the secret key and not of the secrecy of the method. Therefore it is extremely
important to maintain the confidentiality of the keys.

Because key management is an issue in many environments, standards were introduced to
allow key management systems to be built independently from the components using the keys.
Current solutions to the problem include the OASIS Key Management Interoperability Protocol
(KMIP) [33], which specifies operations for managing keys at a remote server. Other key managers
provide a PKCS #11 interface, or a REST API. In the context of OpenStack, for example, where
every service interaction is a REST call, the Barbican project seamlessly provides all necessary
key management functionality for other services.

Key managers differ in the operations they support and in their performance, resilience, and
security capabilities. More complex and evolved solutions such as the Vormetric Data Security

44

Section 4.2: ESCUDO-CLOUD Innovation 45

Management (DSM) or the IBM Security Key Lifecycle Manager (ISKLM) key management
servers (KMSs) put emphasis on the needs of a business environment. For example, governmental
standards for handling health data dictate a reliable audit trail to reconstruct all operations in case
of a problem. This function unavoidably makes the key manager more complex. Such enterprise
key managers were also designed for high availability, to allow uninterrupted service.

While it already is difficult to secure keys stored on one system, this becomes even harder in
a distributed system with multiple entities performing cryptographic operations. First keys have
to be generated from a cryptographically strong source of randomness. These keys then have to
be distributed in a secure way to all nodes of the system which need them. And finally it should
be possible to revoke keys and destroy the key material permanently. This life cycle is valid for
any key in the system. Instead of performing this manually which is prone to human error, special
key-management software can automate these tasks.

Unfortunately this automation can not be trivially scaled to a distributed environment. A
distributed key manager faces a lot of challenges common among distributed systems, which it
has to solve without compromising security. Also its concepts of processes and the user interface
have to be designed in a way that the most intuitive and easiest way is the secure one. Accidental
configuration errors should be prevented by useful defaults and extensive checks for plausibility of
user input. Key managers are an integral component of a cryptographic environment and should
be developed with the same diligence as every other component.

4.2 ESCUDO-CLOUD Innovation

In the remainder of this chapter we present a solution for scaling a key management service to
cloud applications with thousands of clients and possibly millions of keys. This includes the
capability to dynamically scale out based on demand while maintaining security. Our distributed
key management solution should handle all core tasks and scale in a linear way. No existing key
manager provide such scalability.

In particular, our solution addresses an enterprise environment where a key management sys-
tem is deployed. Clients accessing the key manager can be any application that performs crypto-
graphic operations and therefore needs access to keys. They can retrieve these keys after successful
authentication and authorization from a key management server. The key management server has
to provide a consistent view of the available keys even if it serves keys from multiple servers.
Eventually keys have to be stored somewhere. There are three different regions with different
properties.

To store keys persistently across power cycles, there has to be a storage medium that is local
to the key manager. To destroy keys it has to provide a way to be securely erased. A possible
implementation is a battery backed hardware security module (HSM) with the key in volatile
memory, so that the key can be deleted by power cycling. It is important that there must be no
way to recover the key afterwards even for former legitimate parties. Another, cheaper solution
is to use removable USB drives which can be physically destroyed. Despite their possibility for
erasure, these solutions are not scalable and have low capacity in common.

Keeping keys up to date across multiple nodes is possible by managing them in a distributed
key value store (KVS). There are different distributed KVS, most of them only providing eventual
consistency. Their key-value pairs are versioned and they support conditional put operations which
allows to perform atomic get, update and put transactions. The problem is that confidentiality can
not be guaranteed in this distributed system and it should only process encrypted content.

% ESCUDO-CLOUD Deliverable D2.3

46 Scalable Distributed Key Management for Cloud Storage

Eventually the key manager has to serve keys in plaintext. This is only possible if they are
available in decrypted form in the memory of the machine running the key manager. They are
protected from other applications running on the node by the separation of virtual memory. Keys
that are no longer needed can be overwritten and thereby effectively erased.

4.3 Security Model

In a typical scenario where a key manager is deployed, there are three types of actors. The key
manager, the client, and a possible third party which has access to the ciphertext, but is not sup-
posed to decrypt it. This can be a storage provider of the client or a network operator between the
client application and one of its users. Trusted connections between actors can be established, if
they share a secret.

The client has to have means to authenticate against the key manager and establish a confiden-
tial connection, which can be done using TLS and mutual authentication using client and server
certificates. The key manager then authorizes access to keys and delivers them to the client over
the secure channel. After the clients encrypt some data, they can store it or send it to some user.
Either way, it is important that the key management operator does not collude with either of the
other parties. A storage provider colluding with the key manager could circumvent any client
based restrictions and decrypt the storage without its interaction.

4.4 Objectives

Our new key manager aims at satisfying the following objectives.

O'1 Scalability: To provide keys for several thousand clients, the service must be able to scale
out without compromising the atomicity of operations. So all key servers have to operate in a
consistent way, to serve the current version of a key as well as to not serve deleted keys. It should
also be possible to dynamically adapt the number of servers to the load of the system. This requires
an online way to add new key servers to the cluster.

02 Availability: Associated with scalability, the service must also be resilient to failures of
individual nodes, which can, after being repaired, rejoin the cluster. Concerning fail-over and load
balancing, we can rely on the clients, which randomly choose between the announced endpoints
and change the server for retries. A failure of availability results in a complete breakdown of the
provided service, as the clients no longer have access to the encrypted data. Problems with the
consistency of different key management servers can result in loss of data, when different clients
encrypt with different keys.

03 Security Model: As it is necessary to handle plaintext keys in the key manager, we have
to trust the operator of the machine it is running on. It should however be possible to achieve
confidentiality of keys at rest. This includes that a powered off system can not leak sensitive key
material.

04 Secure Deletion: Clients can be requested to delete information permanently. As it is hard to
assure definitive deletion of data from hard drives it is even more challenging on solid state media.

% ESCUDO-CLOUD Deliverable D2.3

Section 4.5: Related Work 47

The approach introduced by Di Crescenzo et al. [21], and more recently extended by Cachin et
al. [8], reduces the amount of data, namely to a single key, which has to be deleted permanently
by encrypting the user data. To securely erase all stored data, it is now sufficient to securely erase
the key, after which the user data, given strong cryptography, resembles only random noise. This
also works for partial deletion, where some files can be retained by re-encryption under a new
key before the old key gets deleted. From a key manager perspective, all these operations can be
supported by key rotation. We need a possibility to change every key and permanently destroy the
sensitive key material that is no longer used.

0’5 Usability: The encryption system is only as secure as the keys used. For many systems, the
weakest point is erroneous handling of sensitive material by the operator. If the system fails to
provide the most convenient way of operating it and there is a less secure and lazier alternative,
sooner or later this alternative will be taken. By streamlining the processes beforehand, it is
possible to check for security breaches in these and if any breaches are detected, rigorous checks
can be implemented.

4.5 Related Work

In every cryptographic system there is also a key manager. In an enterprise context support for
key-lifecycle management is important [7]. Several standalone key managers have been developed
to provide a generic service and support the standard protocols, such as KMIP [33].

The IBM Secure Key Life-cycle Manager is an enterprise key manager with all necessary
functions. It runs on an IBM software stack with WebSphere and DB2. With high demand, ISKLM
can run distributed on a high availability cluster in a robust way. ISKLM provides two interfaces
to manage and retrieve secrets. First, a web interface allows for comprehensive management,
control and auditing; second a KMIP server interface gives the clients access to keys. Clients are
authenticated through the secure connection, using a TLS client-certificate, and then by an in-line
in KMIP using a proprietary authentication scheme. We will provide a subset of ISKLMs features
and within this be fully compatible. Additional security features such as PKCS #11 attachments to
Hardware Security Modules are not within our target solution and ISLKM is better suited for these
scenarios. The main drawbacks of this solution are its high complexity and initial cost as well as
the operational expenses. Our solution targets architectures that need a scalable lightweight key
manager without the rich features of ISKLM.

A related solution is the Vormetric Data Security Management (DSM) server [41]. Besides
the interoperability with KMIP it facilitates integration with database systems such as Microsoft
SQL Server using a proprietary key agent tool. Like ISKLM it is FIPS 140-2 certified and can be
used in regulated businesses that handle sensitive customer data. It is also based on a centralized
architecture and inherently not scalable.

Another lightweight key manager is the python based Barbican inside OpenStack [5]. As all
the services in OpenStack, it provides a simple REST API for all its operations. Its back-end is
designed as a plug-in system, so that at the time of writing (2016), it supports a SQL database or
a KMIP server to hook into business environments, which run, e.g., a central ISKLM. Another
plug-in can communicate with an HSM over PKCS #11 to store the root of a key hierarchy there
securely. The scalability of Barbican is delegated to the scalability of the database used in the
back-end. To process requests, multiple workers can run in a distributed fashion, but they all
interact with a central atomic view of a database via a message queue.

% ESCUDO-CLOUD Deliverable D2.3

48 Scalable Distributed Key Management for Cloud Storage

Cloud key management services such as IBM Key Protect, Amazon KMS and CloudHSM [29,
3, 4] allow users to trade off many of the complexities of managing an in-house key management
server against security, by expanding the trust boundaries to include the key management service
hosted in the cloud. Some cloud KMSs store the encryption keys in secure hardware security
modules (HSMs), and they are typically accessed using Barbican or proprietary REST APIs.

4.6 Design

Given the requirements of scalable key management, we designed a software architecture from
scratch.

To achieve 01, scaling out, we need a way to operate all the nodes of the key manager
coherently. Because there are already good solutions that provide a consistent access to data,
we rely on a distributed KVS for maintaining our keys. Our key manager is independent of
the underlying KVS and only requires a small interface with ger : (key) — (value,version) and
put_conditional : (key,value,version) — (success). Multiple platforms can provide such an inter-
face!.

Keys stored in the KVS need to be protected regarding confidentiality and integrity. Our
approach solves this by encrypting the keys before putting them into the KVS. This requires the
nodes to have a key to access the object. The result is a two level hierarchy with root encryption
keys (REKSs) at the root and the client keys below them. Each child key is encrypted by its parent.
As the REKSs can not be itself distributed over the KVS, they have to reside in node-local, erasable
storage, such as a HSM or USB drive.

Using the distributed KVS as the only means to communicate between otherwise completely
independent key management servers, ¢’2, availability can be guaranteed by having nodes in dif-
ferent failure zones. Keeping a consistent version of the key store among all nodes is assured by
the KVS. The key management service itself is completely stateless and can operate if it has access
to the REK and the KVS.

Our key hierarchy also allows us to fulfill the security requirements of £'3. In a powered down
system, only the REKSs are stored unencrypted. All other decrypted keys only existed in volatile
memory and are no longer accessible.

The key rotation operation required for 4 is a multi-step process. To permanently prohibit
access to a key from the KVS it is not sufficient to remove it, as the KVS might leak information
and given the REK one would still be able to recover the key. The only way is to replace the REK,
which is possible because it is stored on erasable media. Retaining access to other keys is done by
re-encryption under the new REK. Even with a recovered or leaked copy of the old key store, it
can no longer be decrypted, as the corresponding REK is reliably erased.

As all the keys handled are symmetric AES-keys, we need to store them in plain and encrypted
form as a file to store on the USB drive and in the KVS.

4.6.1 File Formats

It would be useful to store the keys in a standardized file format to increase the interoperability
between tools to manipulate them. Unfortunately, there is no standard format for symmetric keys.

The PKCS #12 file format supports lists and hierarchies of keys and can encrypt the entire file,
but it lacks a bag type for symmetric AES-keys. Adding a custom bag type does not help, as any

ICoreOS etcd, Apache ZooKeeper, Ceph, IBM GPFS

% ESCUDO-CLOUD Deliverable D2.3

Section 4.6: Design 49

128b°0
128b°0 length offset=128

Figure 4.1: Header structure of REK files with major and minor version numbers V,,,,; and V4.
The magic is \xe3REK\x0d\x0a\x1a\x0a. All numbers are big-endian unsigned integers.

deviation from the standard is not guaranteed to be widely supported.

The Java Cryptography Extension Key Store (JCEKS) in its latest version supports symmetric
key objects and has a serialization format to store on disk. But the serialization is Java-specific
and can not be reliably parsed by other languages or serialization engines.

Therefore we designed our own format which follows the published KMIP standard as closely
as possible. KMIP was designed as an interoperability protocol, so it does not work for data
storage as is, but provides a useful tag, type, length, value framework to save structured data.
The response format of the interactions conveys the same information which is normally needed
to store. So our storage format looks like a KMIP response message with all unnecessary tags
stripped off. In the header we do not need a date specification and for the batch items there is no
operation or status field. The response payload perfectly suits our storage needs, as it is a suitable
structure to save key material together with its parameters such as length and type.

A direct advantage of this format is the reusability of the KMIP parsing and generation code.
KMIP is designed to be used inside TLS with a possibility for using other secure protocols, which
provide a lot more than a simple file. Integrity, confidentiality and authentication are ensured. For
a KMIP response object to be suitable as a file, we designed a file header, which can provide the
same environment. The file header follows the same big-endianness as KMIP itself.

REK Files

For the REK files, which only need integrity as we can not encrypt them, a hash of the whole
file is sufficient. With a SHAS512 hash, the probability of accidental corruption to result in a valid
file is very small. To conform with tools like file and operating systems, we added a unique
magic byte string for the first 8 bytes. We included a version field that can be incremented if the
hash-specification is deprecated, or if we transition to another payload format like XML.

The size and position of the payload is not only implicitly specified, but also directly by a
length and offset field in our header. With all values set, and the 64 bytes for the hash set to zero,
a SHAS512 hash is calculated over the whole file.

Key Store

The key store which is handled by the KVS has to hold multiple keys and must be encrypted.
KMIP is a very flexible protocol and supports batch responses. So packing multiple keys inside
one response structure is not a problem. It is even possible to handle wrapped keys with all the
related information about the wrapping key and wrapping method. For the sake of simplicity and

% ESCUDO-CLOUD Deliverable D2.3

50 Scalable Distributed Key Management for Cloud Storage

0 byte 32
magic |Vmaj Vinin {:
| SHA 512 |
o GCM IV [320°0
GCM tag length | offset=184
| Dlength | REK 1D |
! 42 chars 7b;1s7e76471171r71 o 7| pad b’0 ‘

Figure 4.2: Header structure of the key store with major and minor version numbers V,,,; and
Vinaj- The magic is \xe3MEK\x0d\x0a\x1a\x0a. All numbers are big-endian unsigned integers.

privacy, we decided to use the same KMIP-format for the payload as for the REK files, and to
encrypt the whole KMIP body. This has the advantage of not disclosing any IDs of keys in the
store.

For the encryption and authentication, we need at least an REK key ID to decrypt with the
right key. As cipher mode we chose Galois Counter Mode (GCM), which provides authenticated
encryption. It also allows to include additional data in plain that is authenticated together with the
encrypted message, which would be perfect for the header, but was not used since the integrity of
the header is already guaranteed by the SHAS512 hash. Compared to the REK header, there are
three new fields: The GCM initialization vector, the authenticated hash (also named tag) and an
REK string which has a length field in front of it and is padded with zeros to an 8-byte boundary.

We use a 96-bit random number from our cryptographic library as initialization vector. This is
announced as sufficiently secure by NIST [23].

Tampering with the unauthenticated header fields does not lead to a malfunction of the KMIP
parser, as the payload first needs to be decrypted and authenticated by the correct key.

4.6.2 System Interactions

The key manager operation is split into a server and a tool. All administrative tasks are performed
directly on the KVS stored data by the tool, and the KMIP server only handles get-key requests.
In the following we list the most important calls in the API of the key manager.

rek_random() — (REKfile,IDrgk)

To bootstrap the system, a root key for encryption is needed. The tool creates a new random key
and stores it in an REK file. Along with the key material, a unique ID is generated. This does
not disclose information about the key but, compared to user defined IDs, avoids having different
key material with the same ID on separate machines. The downside of this approach is usability,
because IDs have to be copied and pasted or entered tediously.

mek_init(REKfile) — (MEKstore)

The minimal requirements for a running system able to serve keys, are an REK file and a dis-
tributed store with at least one key in it. With the REK file, an empty store can be created. This
consists of a KMIP payload with a header only and zero items. The resulting encrypted file un-
der the REK is then put conditionally into the KVS under version zero to ensure that no one else
created the same store concurrently.

% ESCUDO-CLOUD Deliverable D2.3

Section 4.6: Design 51

wrapped

I
| l
! |
'| MEK |
| repo |

[xMIP ! |
! Server | eras. media cli
ik Sk
KMIP in TLS
Y
client cli/gui/web/VES Y

< .
application | " @

Figure 4.3: Overview of the key manager components. Sensitive key material is stored as specified
by the dashed regions

mek_random(REKfile, MEKstore) — (MEKstore)

Given an REK file and access to the KVS, all operations on the store follow a common structure.
First the locally available REK files are parsed and the available REK IDs are extracted. Then the
version and content of the store file from the KVS are fetched. The store is decrypted with the
matching REK and now it is possible to change the stored keys.

If there is a change to the content of the store, as, e.g., an added key, the store has to be flushed
back to the KVS at the end. Therefore it is serialized into KMIP and encrypted again with the
same REK used for decryption. With the version of the store, obtained by the get operation, a
put-conditional is issued and if it fails, the procedure is retried. It may fail completely, when two
nodes try to add the same key simultaneously.

Otherwise inserting a key into the list of stored keys is a small atomic operation. The new
store is directly submitted to the KVS and all active nodes can respond to queries for it because
they can access the store with their local REK file.

get_key(IDkey) — (key)
The get-key operation is the only one used by the serving component. Our key management server
is listening for new requests. For every connection, a TLS handshake is performed to authenticate
the client by its client certificate. This is the only authentication mechanism so far. Over the secure
channel both participants exchange data in the KMIP format. The client can now request a key
with a specific identifier. After extracting the ID, the server queries the cache. If there is a valid
copy in the cache, it is returned, packed in a KMIP structure and sent to the client. This terminates
the TLS channel as we only allow one key per session.

In two cases the cache has to query the KVS for a key. Either it has no copy of the key at all,
or one of the cached keys reaches its refresh-age. This means that a key in the cache is revalidated
every 15 minutes. If the key is still available in the store inside the KVS, it stays in the cache,

% ESCUDO-CLOUD Deliverable D2.3

52 Scalable Distributed Key Management for Cloud Storage

otherwise it is evicted. In contrast to eviction and on-demand fetching, this method reduces the
query latency and is feasible as the cache size is small. Eviction only happens if the cache reaches
its capacity limit.

In order to fetch a key from the KVS, the server has to perform the same steps as the manage-
ment tool. First it looks for available REKs, then gets the store file from the KVS and decrypts
it. The required key can be extracted by parsing the decrypted KMIP payload. Fetching a key is a
read-only operation: Because the store is not modified in this operation, there is no need to write
anything back to the store file, and the local copy can be discarded.

mek_delete(MEKstore, key ID) — (MEKstore)

To remove a key from the key store, the object from the KVS is fetched, decrypted and parsed.
If available, the requested ID is deleted and the store is put back conditionally to the KVS. When
any other client performs an update simultaneously, the action has to be repeated. It can fail if the
interrupting operation has already deleted the key.

mek_init(REKfile) — (MEKstore)

After a key has been deleted from the KVS, there is still the possibility to decrypt an old version,
because the REK is available. To perform a secure deletion of one or multiple previously deleted
keys, it is necessary to rotate the REK.

A way to achieve this, is to load the store, but saving it encrypted with a new key. This new
REK can be created like the previous one with rek_random. To avoid downtime, this key should
be distributed to all key servers before the re-encryption of the store. Deletion of the old keys can
be achieved by saving the REK files on cheap USB drives and physically destroying these.

4.7 Evaluation

To evaluate our key manager and verify that the prototype meets all our defined goals, we used it
to serve keys for a cluster running IBM’s General Parallel File System (GPFS)?. GPFS is a cluster
file system that also offers encryption at the level of files. Therefore each node needs access to a
set of shared keys. The individual nodes of a GPFS cluster are each KMIP clients and can query
the required keys from our key manager. GPFS uses an integrated distributed KVS called cluster
configuration repository (CCR) which we use via the command line interface (CLI) tool.

The test was performed in a realistic environment were we set up a real GPFS 4.1 cluster
on two physical servers. Each is equipped with dual Inte]l® Xeon® E5630 processors, 40GB
memory running RedHat enterprise Linux version 7. The key manager nodes shared the same
physical machines with the GPFS. We created a file system in our cluster which had a policy to
encrypt new files using a key stored in our key manager.

We specified the node of the cluster running the key manager as the KMIP-URL. Because the
GPFS KMIP-client was built to support high availability set-ups, we specified fail-over addresses.
The file system policy triggers the encryption process when a new file is created, therefore fetching
the specified key. We confirmed this transaction in the network trace as well as in the log of the
key manager.

To test the high availability scenario, we did not create files but directly hooked into the key
fetching code and ran it from a test process. This uses the same native code as the file system. The
parameters were to time out after 20 seconds and retry once before selecting the next server. We

ZRecently rebranded as IBM Spectrum Scale, see http://www.ibm.com/systems/storage/spectrum/scale/

% ESCUDO-CLOUD Deliverable D2.3

http://www.ibm.com/systems/storage/spectrum/scale/

Section 4.7: Evaluation 53

250 F =
200 | ST
- x x XX
=
5]
Q
g 150 N
)
=%
3 L FEtFEIFz-————-—-—---- i
% 100 Fr +++++++++ .
= —— linear scaling
50 | + 10 server threads | |
x 20 server threads
- - - theoretical maximum
0 | | | | | |
0 5 10 15 20 25 30

clients

Figure 4.4: Scale up of the service with client side load balancing. It scales linearly. The samples
were taken over a 10 seconds average.

queried a key repeatedly and then shut down the primary key server while monitoring the network
traffic. The resulting exchanges matched the expected behavior.

4.7.1 Scaling

A reasonable measure for the performance of the key manager is the number of keys it can serve
per second. Because the key manager now runs along with the cluster file system on the same
nodes, it is advised to assign a small amount of resources on multiple machines to serve keys
instead of dedicating one node completely to key management. This greatly improves reliability,
as the key servers can then be spread over different failure zones. Restriction of resources is
achieved by limiting the number of concurrent clients, namely the size of the thread-pool handling
the connections.

We queried one key from a single key server with an increasing number of native clients.
These were configured to query the keys back-to-back. Figure 4.4 shows the linear scaling when
the system operates below its capacity limit. By adapting the thread pool size, we can show that the
service scales up as expected. The scaling is independent of the threads’ distribution to different
machines. The number of threads can be distributed arbitrarily to nodes with at least one thread
per node.

In Figure 4.5 the independence of the threads is shown. Running 6 threads on one server yields
the same result as dividing them evenly among two machines. In the distributed case, the clients
randomly chose a server for each key.

In the overload scenario, we see a degradation of the service, as clients fight for resources. To
resolve such an overload situation, additional nodes can be added to the cluster. Clients, configured
in high availability mode, will fail over to the new nodes automatically.

% ESCUDO-CLOUD Deliverable D2.3

54 Scalable Distributed Key Management for Cloud Storage

80 F 3
z T,]
o ¥ x x
o)
o 40 -
i
=
o3
(] . .
= 20| — linear scaling |
+ 3 threads each on 2 server
x 6 threads on 1 server
--- theoretical maximum
0 | | | | | | |
0 2 4 6 8 10 12 14

clients

Figure 4.5: Scale out of the service with client side load balancing. It scales linearly. The samples
were taken over a 10 seconds average.

4.7.2 Latency

The throughput of keys is mainly important for administrative tasks. Booting the cluster or mount-
ing a file system queries a lot of keys. For standard operations, keys are fetched rarely. Therefore
the latency until the required key is fetched, is important when the application opens a new file.

Experimental Setup To reliably measure the latency of the key retrieval, we captured packet
traces on the querying machine. In these traces we can measure the total delay between the TCP
SYN handshake and the KMIP response and TLS-session tear-down.

The total latency is composed of two parts. First, a considerable amount of time is spent to
create the TLS channel. Then the second part represents the key manager’s operation. Depending
on the key queried, it might be served quickly from the cache. If the key is not in the cache, which
is also the case for an unavailable key ID, the key manager has to fetch it from the back-end store.

TLS Handshake The setup of a TLS 1.2 secured channel takes several message exchanges,
which might suggest that the roundtrip time (RTT) of the network is the limiting factor. The RTT
in Ethernet or InfiniBand clusters where GPFS is used, is generally less than 0.5 ms. This is also
true for a normal gigabit Ethernet installation. With a total of about 7 exchanged messages, the
overall time should be a few milliseconds.

Our observed TLS handshake time lies at around 100 ms. To test which parts of the hand-
shake take the longest and might be optimized, we performed tests against an ISKLLM server with
the GPFS client as well as querying LKMS with the default OpenSSL client. We measured the
following timings shown in Figure 4.6.

Apart from the general processing times of the TLS protocol at client and server, our TLS
implementation (provided by IBM Global Security Kit, GSKit) takes 40 ms to agree on a secure
communication. When both client and server run on GSKit, this agreement is done serially, costing
a total of 40 additional milliseconds.

% ESCUDO-CLOUD Deliverable D2.3

Section 4.7: Evaluation 55

ISKLM | LKMS
2 ms 5ms
Client Hello
Server Hello
.C.ertificate 16 ms 6 ms
Certificate Request
Server Hello Done
Certificate
Client Key Exchange
Certificate Verify 22 ms 17 ms

Figure 4.6: TLS handshake timings for GPFS client querying our LKMS (with
TLS_RSA_WITH_AES_256_CBC_SHA) and an ISKLM (with TLS_RSA_WITH_AES_128_CBC_SHA)
for a cached key. Regarding the handshake alone, ISKLLM is faster in accepting the Change Cipher
Spec and therefore the time to first byte (TTFB) is reduced. The times are means and each have a
standard deviation of up to one millisecond. The RTT was around 0.2 ms.

Other TLS implementations, such as the ones used by ISKLM and openss1 have optimized
this delay, so that they are approximately 40% faster to the first byte transmitted. According to
the TLS specification [22] the node verifies certificates and performs cryptographic operations. A
plausible reason for the delay is a slow certificate validation, as the RSA calculations necessarily
have to be done by all the implementations.

Processing Time After a secure channel is established, the client can request a key by its ID.
The time between this request and the response packet, including the key or a failure message, is
regarded as the processing time of the key manager. This time varies depending on the caching
state of the requested key. To achieve representative results, we pre-warmed existing caches. For
the ISKLLM the processing takes about 150 ms for cached keys and 200 ms for new requests.

In our LKMS implementation, fetching keys from our distributed KVS is expensive and we
expected a significant difference between cached keys and unavailable or not cached keys. When
the key can be fetched from main memory, the network latency dominates the request with 0.5 ms.
Parsing the KMIP query and creating the response payload can be performed in far less than
0.5 ms. This was determined by measuring the time difference of request- and response-packet on
the server side.

Our interface to the KVS is a popen call which invokes the shell and then the CCR binary.
This call to get the encrypted store takes about 86 ms. The total processing time for this class
of requests takes around 90 ms. The fluctuations over time due to scheduling on the server show
some small spikes, but they are about one order of magnitude smaller than the total duration. This
fits with the usual scheduling of a Linux system, where scheduling decisions are done on a finer
level than 100 ms.

% ESCUDO-CLOUD Deliverable D2.3

56 Scalable Distributed Key Management for Cloud Storage

Table 4.1: Processing times in milliseconds of queries to CCR and its components.

minimum mean std. dev. maximum

popen a dummy program 1.314 1.564 £0.058 1.833
copying a 14kB file with fstream 0.268 4.102 +1.676 22.780
get a file from KVS (CCR) 85.269 86.509 +2.163 119.400
ping server 0.124 0.179 £0.124 4.040
TLS 1.2 time to first byte 92.400 99.265 +£2.145 106.400
cached key retrieval measured on server 0.200 0.297 £0.050 0.549
measured from client 0.400 0.504 £0.040 0.600

cold key retrieval from request to response 88.400 90.057 +0.755 92.000
total 176.100 187.942 +3.622 192.700

All the timings are assembled in Table 4.1. To sum up the composition of the latency to fetch
a key, the TLS-handshake and the call to CCR dominate. The key management logic and network
round trip times are negligible.

4.7.3 Consistency

To verify the extension of the service to multiple machines, another test is required. It is important
to assess the consistency of operations in the cluster. As we rely on an external distributed key
value service, we have no influence on its performance.

The experimental set up includes two servers where one serves keys to a client and the other is
used to inject updates into the KVS. Our key cache holds keys for 15 minutes which by far exceeds
the time of the KVS spreading the update.

By querying for non-cached keys, we can force our key manager to fetch the current key store
from the KVS. In our test case, we used the GPFS internal CCR as KVS. With an update to the
CCR by the key management tool every 100 ms we saw no impact on the retrieval of keys. This
update rate is far above one in a practical setup, because for the rotation of many keys, the keys
can be processed together in one single batch which results in a single update to the KVS.

4.8 Outlook

This key manager supports a minimalistic set of necessary operations to run as a drop-in replace-
ment for ISKLM in a GPFS cluster. However the long term goal of this project is to provide an
even better and more secure key management service. Some future features are discussed below.

4.8.1 Per Node Asymmetric Key-Pair

In our current scenario, compromising one of the key servers or stealing an REK in combination
with any KVS participant immediately discloses all keys inside the store. This could be improved
by having a private/public key pair for each node. Then the keys in the store can be in wrapped
form for each client individually by its respective public key. The additional complexity would
allow to have fine grained access control on a per client basis and still maintain the central approach
where keys can be definitely deleted.

% ESCUDO-CLOUD Deliverable D2.3

Section 4.9: Final remarks 57

A major problem of this model is the need for a new set of key management operations to
manage the asymmetric key pairs on each client. We decided against this implementation, because
it would no longer be compatible with the targeted KMIP clients.

4.8.2 Protection of Keys in Memory

To handle plaintext keys as sensitive as possible, we first of all need to make sure that they never
leave the volatile memory, e.g., by swapping them on disk. This is achieved by locking the pages
in memory. Although there are attacks on RAM after shut down [28] we are more concerned by
on-line attacks.

The most probable leakage of sensitive memory regions is by a heap based buffer overflow. To
reduce the attack surface, it is possible to hold the keys in inaccessible pages. This can be achieved
by setting the page’s rights to NONE in the memory management unit. Legitimate accesses to the
keys are performed via a small API, which sets the needed rights, performs the wanted action and
locks the keys afterwards. Accidental direct access will result in a segmentation fault.

An overflow vulnerability can still exist and it is possible to beat the odds and read the keys
while they are unlocked. Nevertheless each failure will crash the daemon and successive restarting
will be noticed by a monitoring system.

4.8.3 Access Control

Our key manager has no access control yet, as anyone with a valid client certificate has access to
all keys. Like the ISKLM we could use the KMIP in line authentication mechanisms to separate
keys of different tenants. But it is preferred to run two independent LKMS services with different
REKSs and a different KVS name space on the cluster.

4.9 Final remarks

As encryption of data at rest becomes ever more prevalent, the challenge of managing the encryp-
tion keys also surfaces for more and more different kinds of systems. For large but less mission
critical deployments, justifying an investment in an enterprise-grade key management solution
leveraging hardware security modules may be difficult. This is a scenario where our key manager
comes in: built on top of an untrusted key value store (KVS) in the IBM GPFS cluster file sys-
tem, it provides a scalable and distributed key management solution, serving encryption keys to
GPFS using the standard Key Management Interoperability Protocol (KMIP) for file encryption.
The keys in the encryption hierarchy are stored wrapped in the untrusted key value store, and they
are unwrapped by the GPFS daemon using root encryption keys stored locally in removable and
securely erasable media on each storage node in the GPFS cluster. This hierarchical encryption
key architecture allows for key rotation and secure, cryptographic deletion of data.

Evaluation shows that our prototype was able to linearly scale out even under load from key
updates, and performance measurements conducted on the individual components of our solution
indicate that the throughput and latency is bound by the TLS handshake procedure when setting
up the client key retrieval connection with the server, as well as the performance of the distributed
KVS.

% ESCUDO-CLOUD Deliverable D2.3

5. Conclusions

The deliverable reported on several innovations that contribute to the advancement of the protec-
tion of cloud stored data.

The analysis of the different options for the application of over-encryption described in Chap-
ter 2 offers a contribution that is directly implemented in Swift, one of the most used open-source
cloud storage solutions, but the approaches that have been considered for Swift have a clear im-
mediate application also to other solutions that support data storage.

In Chapter 3 we presented a dynamic tree-based data structure for storing resources at an
external server and guaranteeing access privacy. Our approach does not require maintaining any
storage at the client side. The advantage of being stateless, besides not requiring the client to
commit resources, also permits to accommodate multiple clients and provides resilience of the
structure against failures or unavailability of the client. The dynamic restructuring of the tree
at both the logical and physical level provide access privacy, making the frequency distribution
of accesses to the physical blocks indistinguishable from the one produced by a uniform access
profile.

Chapter 4 has described a scalable key manager, which uses an untrusted distributed key-
value store (KVS) and is accessible over the Key-Management Interoperability Protocol (KMIP).
It implements a key hierarchy and focuses on providing scalable performance that is suitable to
serve keys at very high rate.

Overall, the design of techniques able to enforce confidentiality of outsourced data has the
potential to greatly accelerate the rate of adoption of cloud storage, leading it to become the stan-
dard approach for the management of any kind of data. Local storage and traditional file systems
would then only play the role of a cache that speeds up access to data, but persistence would be
guaranteed by cloud providers. The work presented in this deliverable aims at accelerating the
realization of this vision.

58

Bibliography

[1]

(2]

(3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

H. Albaroodi, S. Manickam, and M. Anbar. A proposed framework for outsourcing and
secure encrypted data on OpenStack object storage (Swift). Journal of Computer Science,
11(3):590-597, 2015.

H. Albaroodi, S. Manickam, and P. Singh. Critical review of OpenStack security: Issues and
weaknesses. Journal of Computer Science, 10(1):23-33, 2014.

Amazon CloudHSM. https://aws.amazon.com/cloudhsm/.
Amazon Key Management Service. https://aws.amazon.com/kms/.
OpenStack Barbican. https://wiki.openstack.org/wiki/Barbican.

V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing oblivious access
on cloud storage: The gap, the fallacy, and the new way forward. In Proc. of CCS, Denver,
CO, October 2015.

M. Bjorkqvist, C. Cachin, R. Haas, X. Hu, A. Kurmus, R. Pawlitzek, and M. Vukoli¢. Design
and implementation of a key-lifecycle management system. In S. Radu, editor, International
Conference on Financial Cryptography and Data Security, pages 160—174. Springer, 2010.

C. Cachin, K. Haralambiev, H. Hsiao, and A. Sorniotti. Policy-based secure deletion. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, pages 259-270, New York, NY, USA, 2013. ACM.

C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In Proc. of EUROCRYPT, Prague, Czech Republic, May
1999.

S. Chow. A framework of multi-authority attribute-based encryption with outsourcing and
revocation. In Proc. of SACMAT, Shanghai, China, June 2016.

J. Dautrich and C. Ravishankar. Tunably-oblivious memory: Generalizing ORAM to enable
privacy-efficiency tradeoffs. In Proc. of CODASPY, San Antonio, TX, March 2015.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati.
Enforcing dynamic write privileges in data outsourcing. Computers and Security, 39:47-63,
November 2013.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and P. Samarati.
Encryption-based policy enforcement for cloud storage. In Proc. of SPCC, Genova, Italy,
June 2010.

59

https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/kms/
https://wiki.openstack.org/wiki/Barbican

60

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Over-
encryption: Management of access control evolution on outsourced data. In Proc. of VLDB,
Vienna, Austria, September 2007.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Encryption
policies for regulating access to outsourced data. ACM TODS, 35(2):12:1-12:46, April 2010.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Efficient
and private access to outsourced data. In Proc. of ICDCS, Minneapolis, MN, June 2011.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Supporting
concurrency and multiple indexes in private access to outsourced data. JCS, 21(3):425-461,
2013.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Shuffle
index: Efficient and private access to outsourced data. ACM TOS, 11(4):19:1-19:55, October
2015.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati. Three-
server swapping for access confidentiality. /[EEE TCC, 2016. pre-print.

S. Devadas, M. van Dijk, C. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion ORAM: A
constant bandwidth blowup oblivious RAM. In E. Kushilevitz and T. Malkin, editors, Proc.
of TCC, 2016.

G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget a secret.
In C. Meinel and S. Tison, editors, Symposium on Theoretical Aspects of Computer Science
(STACS), volume 1563 of Lecture Notes in Computer Science, pages 500-509. Springer,
1999.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878, 6176.

M. Dworkin. Sp 800-38d. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter mode (GCM) and GMAC. Technical report, National Institute of Standards &
Technology, Gaithersburg, MD, United States, 2007.

D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained ac-
cess control of encrypted data. In Proc. of ACM CCS, Alexandria, USA, October—November
2006.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weinberger. Quickly generating
billion-record synthetic databases. In Proc. of SIGMOD, Minneapolis, MN, 1994.

H. Hacigiimiis, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted data in the
database-service-provider model. In Proc. of SIGMOD, Madison, WI, June 2002.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold-boot attacks on encryp-
tion keys. Commun. ACM, 52(5):91-98, May 2009.

% ESCUDO-CLOUD Deliverable D2.3

Bibliography 61

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

IBM Key Protect. https://console.ng.bluemix.net/catalog/services/
key-protect/.

N. Kaaniche, M. Laurent, and M. E. Barbori. Cloudasec: A novel public-key based frame-
work to handle data sharing security in clouds. In Proc. of SECRYPT, Vienna, Austria,
August 2014.

S. Kang, B. Veeravalli, and K. Aung. ESPRESSO: An encryption as a service for cloud
storage systems. In Proc. of AIMS, Brno, Czech Republic, June-July 2014.

P. Lin and K. Candan. Hiding traversal of tree structured data from untrusted data stores. In
Proc. of WOSIS, Porto, Portugal, April 2004.

OASIS Key Management Interoperability Protocol Technical Committee. Key Management
Interoperability Protocol Version 1.2, 2015. OASIS Standard, available from http://www.
oasis-open.org/committees/documents.php?wg_abbrev=kmip.

R. Ostrovsky and W. E. Skeith, III. A survey of single-database private information retrieval:
Techniques and applications. In Proc. of PKC, Beijing, China, April 2007.

L. Ren, C. Fletcher, X. Yu, A. Kwon, M. van Dijk, and S. Devadas. Unified oblivious-RAM:
Improving recursive ORAM with locality and pseudorandomness. JACR Cryptology ePrint
Archive, 205, 2014.

0. Sefraoui, M. Aissaoui, and M. Eleuldj. OpenStack: Toward an open-source solution for
cloud computing. IJCA, 55(3):38-42, 2012.

D. Sleator and R. Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):652-686, July
1985.

E. Stefanov and E. Shi. ObliviStore: High performance oblivious cloud storage. In Proc. of
IEEE S&P, San Francisco, CA, May 2013.

E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:
An extremely simple Oblivious RAM protocol. In Proc. of CCS, Berlin, Germany, November
2013.

OpenStack Swift at-rest encryption. http://specs.openstack.org/openstack/
swift-specs/specs/in_progress/at_rest_encryption.html.
Vormetric Data Security Management. https://www.vormetric.com/products/

data-security-manager.

C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE TPDS, 23(8):1467-1479, August 2012.

X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang. Comparison of open-source cloud management
platforms: OpenStack and OpenNebula. In Proc. of FSKD, Sichuan, China, May 2012.

P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In Proc. of CCS, Alexandria, VA, October
2008.

% ESCUDO-CLOUD Deliverable D2.3

https://console.ng.bluemix.net/catalog/services/key-protect/
https://console.ng.bluemix.net/catalog/services/key-protect/
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://specs.openstack.org/openstack/swift-specs/specs/in_progress/at_rest_encryption.html
http://specs.openstack.org/openstack/swift-specs/specs/in_progress/at_rest_encryption.html
https://www.vormetric.com/products/data-security-manager
https://www.vormetric.com/products/data-security-manager

62 Bibliography

[45] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic. Truststore: Making Amazon S3 trustworthy
with services composition. In Proc. of CCGrid, Melbourne, Australia, May 2010.

[46] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained data
access control in cloud computing. In Proc. of INFOCOM, San Diego, USA, March 2010.

% ESCUDO-CLOUD Deliverable D2.3

	Executive Summary
	Introduction
	Secure Cloud Storage
	State of the Art
	ESCUDO-CLOUD Innovation
	Basic Concepts
	Access Control Enforcement in Swift
	Keys and User-Based Repositories
	Policy-Based Encryption

	Policy Updates
	Enforcement of Policy Updates
	Implementation of Over-Encryption

	Experimental Results
	Comparison Between Client Re-Encryption and Over-Encryption
	Analysis of Over-Encryption Approaches
	Streaming and Batch Encryption
	Application of Two Encryption Layers

	Protection of Access Confidentiality
	State of the Art
	ESCUDO-CLOUD Innovation
	Overview of the Approach
	Data Organization and Storage
	Uniform Accesses
	Target Bubbling
	Speculative Rotations
	Physical Re-allocation
	Analysis and Experimental Evaluation

	Scalable Distributed Key Management for Cloud Storage
	State of the Art
	ESCUDO-CLOUD Innovation
	Security Model
	Objectives
	Related Work
	Design
	File Formats
	System Interactions

	Evaluation
	Scaling
	Latency
	Consistency

	Outlook
	Per Node Asymmetric Key-Pair
	Protection of Keys in Memory
	Access Control

	Final remarks

	Conclusions
	Bibliography

