
Project title: Enforceable Security in the Cloud to Uphold Data Ownership

Project acronym: ESCUDO-CLOUD

Funding scheme: H2020-ICT-2014

Topic: ICT-07-2014

Project duration: January 2015 – December 2017

D3.1

Report on techniques for selective access

Editors: Sara Foresti (UNIMI)

Giovanni Livraga (UNIMI)

Reviewers: Nikola Knežević (IBM)

Luis Alcántara García (WT)

Abstract

Today, users placing their data in the cloud are more and more relying on services and facilities offered by

cloud service providers for easily sharing resources with others. Data sharing is however typically selective,

that is, the owner of each resource may wish to enforce restrictions on who can access her resources in the

cloud. Since the enforcement of such restrictions can be delegated neither to the owner (for practical and

efficiency reasons) nor to the cloud provider (for security reasons), the data themselves need to self-enforce

access control rules. To this aim, in this deliverable we illustrate an approach for selective access that

is based on selective encryption, which consists in adopting different keys to protect different pieces of

information and in distributing keys to users according to their access privileges. We then focus on the

supply chain scenario, and describe the use of RFID tags for authentication and of selective encryption for

access control enforcement.

Type Identifier Dissemination Date

Deliverable D3.1 Public 2015.12.31

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 644579. This work was supported in part by the Swiss State Secretariat for Education,

Research and Innovation (SERI) under contract No 150087. The opinions expressed and arguments employed herein

do not necessarily reflect the official views of the European Commission or the Swiss Government.

Ref. Ares(2015)6069003 - 31/12/2015

ESCUDO-CLOUD Consortium

1. Università degli Studi di Milano UNIMI Italy

2. British Telecom BT United Kingdom

3. EMC Corporation EMC Ireland

4. IBM Research GmbH IBM Switzerland

5. SAP SE SAP Germany

6. Technische Universität Darmstadt TUD Germany

7. Università degli Studi di Bergamo UNIBG Italy

8. Wellness Telecom WT Spain

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the

information is fit for any particular purpose. The below referenced consortium members shall have no liability for

damages of any kind including without limitation direct, special, indirect, or consequential damages that may result

from the use of these materials subject to any liability which is mandatory due to applicable law. Copyright 2015 by

Università degli Studi di Milano, SAP SE, Università degli Studi di Bergamo.

2

Versions

Version Date Description

0.1 2015.11.23 Initial Release

0.2 2015.12.14 Second Release

1.0 2015.12.31 Final Release

3

List of Contributors

This document contains contributions from different ESCUDO-CLOUD partners. Contributors

for the chapters of this deliverable are presented in the following table.

Chapter Author(s)

Executive Summary Sabrina De Capitani di Vimercati (UNIMI),

Sara Foresti (UNIMI)

Chapter 1: Introduction Sara Foresti (UNIMI)

Chapter 2: Selective access Sabrina De Capitani di Vimercati (UNIMI),

Sara Foresti (UNIMI), Giovanni Livraga

(UNIMI), Stefano Paraboschi (UNIBG),

Pierangela Samarati (UNIMI)

Chapter 3: Selective access for supply chain

management

Florian Kerschbaum (SAP)

Chapter 4: Conclusions Sara Foresti (UNIMI)

4

Contents

Executive Summary 7

1 Introduction 9

1.1 Scenario and problem definition . 9

1.2 Outline . 10

2 Selective access 11

2.1 Selective encryption for access control . 11

2.2 Policy updates . 15

2.2.1 Over-encryption . 16

2.2.2 Grant and revoke . 17

2.2.3 Exposure evaluation . 20

2.3 Support for write privileges . 21

2.3.1 Write tags . 21

2.3.2 Write policy updates . 22

2.4 Implementation of the proposed approach . 23

3 Selective access for supply chain management 25

3.1 Problem statement . 25

3.2 Supply chain visibility policies . 26

3.2.1 Definition . 26

3.2.2 Management of visibility policies . 27

3.2.3 ABAC integration . 27

3.3 RFID-authentication and selective encryption policy 29

3.3.1 Authentication via RFID . 29

3.3.2 Selective encryption within a supply chain scenario 32

4 Conclusions 35

Bibliography 36

5

List of Figures

1.1 Reference scenario . 10

2.1 An example of relation . 12

2.2 An example of access matrix . 12

2.3 An example of encryption policy equivalent to the access control policy in Fig-

ure 2.2, considering the subset {A,B,C,D} of users 13

2.4 Definition of an encryption policy equivalent to the access control policy in Fig-

ure 2.2 . 15

2.5 Encryption policies at BEL and SEL, equivalent to the access control policy in

Figure 2.2 . 18

2.6 Encryption policies at BEL and SEL in Figure 2.5 after granting D access to t1 . . 19

2.7 Encryption policies at BEL and SEL in Figure 2.6 after revoking B access to t4 . . 19

2.8 Possible views on a tuple t . 20

2.9 Encryption policy in Figures 2.4(c-d) extended to the enforcement of write privileges 22

3.1 Example of an object traversing a supply chain 33

3.2 Access matrix and encryption policy subsequently to the move step 34

3.3 Access matrix and encryption policy after authentication of M for t3 34

3.4 Key derivation graph and access matrix . 34

6

Executive Summary

The wide availability of cloud service providers offering a variety of services at convenient prices,

and the growing amount of information generated every day are encouraging users and companies

to move their data to the cloud. Since cloud providers are often considered honest-but-curious (i.e.,

trusted to correctly manage the data they store but not trusted to access their content), users can

wrap their data in a protective encryption layer before storing them in the cloud. If the encryption

key is kept secret and communicated to authorized users only, encryption protects data confiden-

tiality against both unauthorized users and curious providers. One of the reasons why users move

their data to the cloud is however represented by the availability of facilities for easily sharing

their data with others. Such a sharing is typically selective (i.e., each user should be able to access

only the resources for which she is authorized by the data owner), and neither the data owner nor

the cloud provider should be in charge of enforcing access restrictions. In fact, the enforcement of

selective access by the data would require her to mediate every access request, thus nullifying the

advantages of moving to the cloud. On the other hand, the cloud provider, being not fully trusted,

cannot be authorized for this task.

The first goal of this deliverable is to illustrate an approach able to guarantee that outsourced

data self-enforce access restrictions. This technique relies on selective encryption, which consists

in encrypting different pieces of information with different encryption keys according to the set of

users who can access them. These encryption keys are then distributed to users in such a way that

each user can decrypt all and only the data that she is authorized to access. The authorization policy

defined by the data owner is then translated into an equivalent encryption policy, regulating key

distribution to users and resources (for their encryption). Although effective, selective encryption

requires data re-encryption every time a user is granted or revoked access to a piece of information.

This deliverable presents an approach able to partially delegate to the cloud provider the burden

of managing updates to the access policy. The deliverable also presents an approach, based on

selective encryption, for enforcing write access restrictions (which the data owner may want to

grant to selected users), supporting also updates in the write authorization policy.

The second goal of this deliverable is to apply selective encryption techniques to the supply

chain scenario, which characterizes ESCUDO-CLOUD Use Case 2. In this scenario, a set of

mobile physical objects are handled by a set of players, which collect and store in the cloud

information about the objects themselves. Clearly, not all the players in the system are authorized

to access all the data about all the objects, but only a subset of them (e.g., the players that handled

an object can access its data). To properly enforce access control over the data collected in a

supply chain, this deliverable presents a solution that adopts RFID tags to authenticate players

(and to determine whether a player handled a given object), and selective encryption to enforce

access restrictions over the data in the cloud.

7

1. Introduction

In this chapter, we illustrate the reference scenario and the problem addressed in the remainder of

this deliverable.

1.1 Scenario and problem definition

Moving data storage and management to the cloud clearly provides data owners and final users

with considerable advantages related, for instance, to lower costs, higher availability, and larger

elasticity that are offered by the growing cloud market. A major obstacle refraining from the

wide adoption of cloud services is represented by the loss of control over sensitive data. In fact,

outsourced data are no more under the direct control of their owner as they are stored at a honest-

but-curious provider. A common approach adopted to guarantee confidentiality of the data content

consists in encrypting the data before outsourcing them. Since the encryption key is communicated

to authorized users only, neither unauthorized users nor the cloud provider can access the sensitive

data content.

Although user-side encryption is effective in protecting data confidentiality to the eyes of non-

authorized users and curious providers, it naturally provides complete plaintext access to every

user authorized for the system. In a wide cloud scenario, characterized by the presence of a

variety of users, data owners may need to enforce a specific access control policy. An access

control policy is a set of rules defined by the data owner specifying who can access what piece of

her data in the cloud. If a single key is used to protect the whole data collection, selective data

sharing can be enforced only by the data owner (who would need to filter every access request)

or by the cloud provider (who would need to know the access control policy). However, neither

of these parties can enforce selective access to the data in the cloud, for efficiency and privacy

reasons, respectively.

The reference scenario considered in this deliverable is illustrated in Figure 1.1 and is charac-

terized by the presence of one data owner, who stores her data at one cloud provider and needs to

selectively share her data with other users. Users can be authorized to read or write (or both) the

owner’s data according to the data owner’s access control policy, which may vary over time.

In this deliverable, we present a solution able to enforce selective access privileges over out-

sourced data without requiring the intervention of the data owner or of the cloud provider. This

solution is based on selective encryption, that is, on the adoption of different encryption keys to

protect different portions of the data. If encryption keys are properly distributed to users, we can

guarantee that each user can decrypt all and only the data she is authorized to read. Since the

data owner may be willing to allow trusted users to also modify her data, this basic approach is

extended to support the enforcement of write privileges. A challenge that needs to be addressed

when relying on selective encryption for access control enforcement is the management of policy

updates. Indeed, a change in the set of users who can access a piece of information would trivially

9

10 Introduction

Figure 1.1: Reference scenario

require re-encryption of the data with a new key. To avoid such an expensive operation, this deliv-

erable illustrates a solution that relies on two encryption layers, one managed by the data owner

and one managed by the cloud provider, to partially delegate policy updates to the latter.

Selective encryption approaches for access control enforcement can be effectively applied in

the supply chain scenario (ESCUDO-CLOUD Use Case 2), which is characterized by multiple

players that store data about the objects they handle in a database stored in the cloud. In fact, data

collected about the objects processed by a supply chain can be accessed only by a subset of the

parties in the system, depending on their role in the supply chain and on the specific policy regulat-

ing access to the dataset. This deliverable first presents a solution for authenticating (authorized)

players within a supply chain through RFID tags. Then, it illustrates the adoption of selective

encryption for enforcing access control over the data collected in the supply chain management

and stored in the cloud repository.

1.2 Outline

The remainder of this document is organized as follows.

• Chapter 2 illustrates an approach based on selective encryption for enforcing selective access

privileges, which supports both read and write operations. To effectively support updates

to the access control policy, while limiting expensive re-encryption operations, this chapter

also illustrates over-encryption as a solution to partially delegate to the cloud provider grant

and revoke operations.

• Chapter 3 specifically focuses on the supply chain scenario, illustrating how RFID tags

can be used for authentication and how selective encryption can enforce selective access to

information about objects by the players of a supply chain.

• Chapter 4 presents concluding remarks.

ESCUDO-CLOUD Deliverable D3.1

2. Selective access

In this chapter, we illustrate how a data owner outsourcing her resources to a Cloud Service

Provider (CSP) can selectively make them accessible to other users by means of selective encryp-

tion, which adopts different encryption keys for different resources, and distributes keys to users

so that each user can decrypt only allowed resources. We first illustrate how selective encryption,

coupled with suitable key derivation techniques, operates to enforce access control (Section 2.1).

We then discuss how updates to the access control policy (Section 2.2) and write access restric-

tions (Section 2.3) are enforced. We finally discuss a possible approach for the implementation of

the proposed access control system in OpenStack (Section 2.4).

2.1 Selective encryption for access control

Our solution for enforcing access control to outsourced data is based on selective encryption.

Selective encryption consists in using different keys to encrypt different tuples, and in selectively

distributing those keys to authorized users so that each user can decrypt (and therefore access)

all and only the tuples she is entitled to access according to the authorization policy defined by

the data owner. The information that a data owner can outsource to a CSP can be of any type:

relational databases, XML documents, multimedia files, and so on. For simplicity, but without

loss of generality, in this chapter we assume the data outsourced to the CSP to be organized in

a relational database, with the note that the approach illustrated in the following can be easily

adapted to operate on any logical data modeling. We then consider a relation r defined over

schema R(a1, . . . ,an), where attribute ai is defined over domain Di, i = 1, . . . ,n. At the instance

level, each relation r is composed of a set of tuples, where each tuple t is a function mapping

attributes to values in their domains. Given an attribute a, notations t[a] represent the value of

attribute a in t. At the CSP, relation r is represented through an encrypted relation rk, defined over

schema Rk(tid, enc), with tid a numerical primary key added to the encrypted relation and enc

the encrypted tuple. Each tuple t in r is represented as an encrypted tuple tk in rk, where tk[tid]

is randomly chosen by the data owner and tk[enc]=Ek(t), with E a symmetric encryption function

with key k.

Given a set U of users and a relation r to be outsourced, the authorization policy regu-

lating which user u ∈ U can read which tuple t ∈ r, is defined before outsourcing relation r

(e.g., [DEF+14, DFJL12, DFJ+10]). The authorization policy can be represented as a binary

access matrix M with a row for each user u, and a column for each tuple t, where: M[u,t]=1 iff

u can access t; M[u,t]=0 otherwise. To illustrate, consider relation PATIENTS in Figure 2.1. Fig-

ure 2.2 illustrates an example of access matrix regulating access to the tuples in relation PATIENTS

by users A, B, C, D, and E . The j-th column of the matrix represents the access control list acl(t j)

of tuple t j, for each j = 1, . . . , |r|. As an example, with reference to the matrix in Figure 2.2,

acl(t1)=ABC.

11

12 Selective access

PATIENTS

SSN Name ZIP MarStatus Illness

t1 123456789 Ann 22010 single gastritis

t2 234567891 Barbara 24027 divorced neuralgia

t3 345678912 Carl 22010 married gastritis

t4 456789123 Daniel 20100 married gastritis

t5 567891234 Emma 21048 single neuralgia

t6 678912345 Fred 23013 married hypertension

t7 789123456 Gary 22010 widow gastritis

t8 891234567 Harry 24027 widow hypertension

Figure 2.1: An example of relation

t1 t2 t3 t4 t5 t6 t7 t8

A 1 1 0 1 1 1 1 0

B 1 1 1 1 1 0 0 0

C 1 1 1 0 1 1 0 0

D 0 0 0 1 1 1 0 1

E 0 0 0 1 1 1 0 0

Figure 2.2: An example of access matrix

Enforcing an access control policy with encryption requires to define an encryption policy, to

establish keys for encrypting tuples and keys to be distributed to users. Indeed, the encryption

policy must be equivalent to the authorization policy, meaning that each user should be able to

decrypt all and only the tuples she is authorized to access. Solutions translating an authorization

policy into an equivalent encryption policy (e.g., [DFJ+10]) have two main design desiderata: i)

guarantee that each user has to manage only one key; and ii) encrypt each tuple with only one key

(i.e., no tuple is replicated).

To fulfill these two requirements, selective encryption approaches rely on key derivation tech-

niques that allows a user to compute an encryption key k j starting from the knowledge of another

key ki and of a piece of publicly available information. To determine which key can be derived

from which other key, key derivation techniques require the preliminary definition of a key deriva-

tion hierarchy. A key derivation hierarchy can be graphically represented as a directed acyclic

graph with a vertex vi for each key ki in the system and an edge (vi,v j) from key ki to key k j iff k j

can be directly derived from ki. Note that key derivation can be applied in chain, meaning that key

k j can be computed starting from key ki if there is a path (of arbitrary length) from vi to v j in the

key derivation hierarchy.

A key derivation hierarchy can have different shapes, as described in the following.

• Chain of vertices (e.g., [San87]): the key k j associated with vertex v j is computed by apply-

ing a one-way function to the key ki of its predecessor in the chain (e.g., k j = h(ki), with h

a one-way hash function). With this kind of shape of the key derivation structure, no public

information is needed.

• Tree hierarchy (e.g., [San88]): the key k j associated with vertex v j is computed by applying

a one-way function to the key ki of its direct ancestor, and a public label l j associated with

k j (e.g., k j = h(ki, l j), with h a one-way hash function). Public labels are necessary to

guarantee that different children of the same node in the tree have different keys.

ESCUDO-CLOUD Deliverable D3.1

Section 2.1: Selective encryption for access control 13

�� ��
�� ��AB

''◆◆
◆◆

◆◆
◆

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

�� ��
�� ��A

88qqqqqqq //

&&▼▼
▼▼

▼▼
▼

�� ��
�� ��AC //

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

�� ��
�� ��ABC

''❖❖
❖❖❖

❖❖

�� ��
�� ��B

AA✄✄✄✄✄✄✄✄✄✄

&&▼▼
▼▼

▼▼
▼

��❀
❀❀

❀❀
❀❀

❀❀
❀

�� ��
�� ��AD //

''◆◆
◆◆

◆◆
◆

�� ��
�� ��ABD //�� ��

�� ��ABCD

�� ��
�� ��C

AA✄✄✄✄✄✄✄✄✄✄ //

��❀
❀❀

❀❀
❀❀

❀❀
❀

�� ��
�� ��BC

@@✁✁✁✁✁✁✁✁✁✁✁

''◆◆
◆◆

◆◆
◆

�� ��
�� ��ACD

77♦♦♦♦♦♦♦

�� ��
�� ��D

AA✄✄✄✄✄✄✄✄✄✄ //

&&▼▼
▼▼

▼▼
▼

�� ��
�� ��BD

@@✁✁✁✁✁✁✁✁✁✁✁ //�� ��
�� ��BCD

??⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

�� ��
�� ��CD

@@✁✁✁✁✁✁✁✁✁✁✁

77♣♣♣♣♣♣♣

user key

A kA

B kB

C kC

D kD

tuple key

t1 kABC

t2 kABC

t3 kBC

t4 kABD

t5 kABCD

t6 kACD

t7 kA

t8 kD

(a) (b) (c)

Figure 2.3: An example of encryption policy equivalent to the access control policy in Figure 2.2,

considering the subset {A,B,C,D} of users

• DAG hierarchy (e.g., [AT83, ABFF09, CMW06, DFM04]): since a vertex v j in a DAG can

have more than one direct ancestor, to enable the derivation of key k j from the keys of

different direct ancestors, each edge in the hierarchy is associated with a publicly available

token [ABFF09]. Given two keys ki and k j, and the public label l j of k j, ti, j permits to

compute k j from ki and l j, and is computed as ti, j=k j⊕h(ki,l j), where ⊕ is the bitwise XOR

operator, and h is a deterministic cryptographic function. By means of ti, j, all users knowing

(or able to derive) key ki can also derive key k j.

Each of the proposed shapes (and hence, each of the corresponding key derivation techniques)

has advantages and disadvantages. However, the DAG hierarchy, which adopts tokens for key

derivation, best fits the outsourcing scenario by minimizing the need of re-encryption and/or key

re-distribution in case of updates to the authorization policy [DFJ+10] (for more details, see Sec-

tion 2.2).

An intuitive approach to define a DAG key derivation hierarchy suited for access control en-

forcement, and able to satisfy the desiderata of limiting the key management overhead, adopts the

set containment relationship ⊆ over the set U of users [DFJ+10]. Such a hierarchy has a vertex

for each of the elements of the power-set of the set U of users, and a path from vi to v j iff the set

of users represented by vi is a subset of that represented by v j. The correct enforcement of the

authorization policy defined by the data owner is guaranteed iff: i) each user ui is communicated

the key associated with the vertex representing her; and ii) each tuple t j is encrypted with the key

of the vertex representing acl(t j). With this strategy, each tuple can be decrypted and accessed by

all and only the users in its access control list, meaning that the encryption policy is equivalent

to the authorization policy defined by the data owner. Furthermore, each user has to manage one

key only, and each tuple is encrypted with one key only. For instance, Figure 2.3(a) illustrates

the key derivation hierarchy induced by the set U={A,B,C,D} of users and the subset containment

relationship over it (in the figure, vertices are labeled with the set of users they represent). Fig-

ure 2.3(b) and Figure 2.3(c) illustrate the keys assigned to users in the system and the keys used

to encrypt the tuples in relation PATIENTS in Figure 2.1, respectively. The encryption policy in

the figure enforces the access control policy in Figure 2.2 restricted to the set U={A,B,C,D} of

users as each user can derive, from her own key, the keys of the vertices to which she belongs and

hence decrypt the tuples she is authorized to read. For instance, user C can derive the keys used to

encrypt tuples t1, t2, t3, t5, and t6, and then access their content.

ESCUDO-CLOUD Deliverable D3.1

14 Selective access

Even though this approach correctly enforces an authorization policy and enjoys ease of im-

plementation, it defines more keys and more tokens than necessary. Since tokens are stored in a

publicly available catalog at the CSP, when a user u wants to access a tuple t she needs to interact

with the CSP to visit the path in the key derivation hierarchy from the vertex representing u to the

vertex representing acl(t). Therefore, keeping the number of tokens low increases the efficiency

of the derivation process, and then reduces the response time to users. The problem of minimizing

the number of tokens, while guaranteeing equivalence between the authorization and the encryp-

tion policies, is NP-hard (it can be reduced to the set cover problem) [DFJ+10]. It is however

interesting to note that not all the vertices and tokens in the key derivation hierarchy discussed

above are necessary for the enforcement of an access control policy.

• The vertices needed for correctly enforcing an authorization policy are only those represent-

ing singleton sets of users (corresponding to users’ keys) and the access control lists of the

tuples (corresponding to keys used to encrypt tuples) in r. For instance, with respect to the

encryption policy in Figure 2.3, vertex AB represents neither a user of the system nor the

access control list of a resource (Figures 2.3(b)-(c)), and is therefore not necessary for the

enforcement of the access control policy.

• It is sufficient that there exists a path reaching the vertex representing the access control lists

of a tuple form the vertex of each of the users who can access the tuple. For instance, with

respect to the encryption policy in Figure 2.3, one among edges (AB,ABD), (AD,ABD), and

(BD,ABD) is redundant.

• When two or more vertices have more than two common direct ancestors, the insertion

of a vertex representing the set of users corresponding to these ancestors reduces the total

number of tokens.

Elaborating on these two intuitions to reduce the number of tokens, the following heuristic

approach efficiently provides good results [DFJ+10].

1. Initialization. The algorithm first identifies the vertices necessary to enforce the autho-

rization policy, that is, the vertices representing: i) singleton sets of users, whose keys are

communicated to users and that allow them to derive the keys of the tuples they are entitled

to access; and ii) the access control lists of the tuples, whose keys are used for encryption.

These vertices represent the set of material vertices of the system.

2. Covering. For each material vertex v corresponding to a non-singleton set of users, the

algorithm finds a set of material vertices that form a non-redundant set covering for v,

which become direct ancestors of v. A set V of vertices is a set covering for v if for each

u in v, there is at least a vertex vi in V such that u appears in vi. It is non-redundant if the

removal of any vertex from V produces a set that does not cover v.

3. Factorization. For each set {v1, . . .vm} of vertices that have n > 2 common ancestors

v′1, . . . ,v
′
n, the algorithm inserts an intermediate vertex v representing all the users in v′1, . . . ,v

′
n

and connects each v′i, i = 1, . . . ,n, with v, and v with each v j, j = 1, . . . ,m. In this way, the

encryption policy includes n+m, instead of n ·m tokens in the catalog.

Figure 2.4 illustrates, step by step, the definition of the key derivation hierarchy through the al-

gorithm in [DFJ+10], for the authorization policy in Figure 2.2. The initialization phase generates

ESCUDO-CLOUD Deliverable D3.1

Section 2.2: Policy updates 15

�� ��
�� ��A

�� ��
�� ��ABC

�� ��
�� ��B

�� ��
�� ��ABDE

�� ��
�� ��C

�� ��
�� ��BC

�� ��
�� ��ABCDE

�� ��
�� ��D

�� ��
�� ��ACDE

�� ��
�� ��E

�� ��
�� ��A //

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

++❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

++❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC
✞✞✞✞✞✞✞✞✞✞ �� ��

�� ��ABCDE

�� ��
�� ��D //

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ �� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

::ttttttttttttttttttttttt

(a) initialization (b) covering

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC✞✞✞✞✞✞✞✞✞✞ �� ��
�� ��ABCDE

�� ��
�� ��D // ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A kA

B kB

C kC

D kD

E kE

tuple key

t1 kABC

t2 kABC

t3 kBC

t4 kABDE

t5 kABCDE

t6 kACDE

t7 kA

t8 kD

(c) factorization (d) key assignment

Figure 2.4: Definition of an encryption policy equivalent to the access control policy in Figure 2.2

the set of (material) vertices in Figure 2.4(a). The covering phase generates the preliminary key

derivation hierarchy in Figure 2.4(b), where each vertex is connected to a set of parents including

all and only the users in the vertex itself. The factorization phase generates the key derivation

hierarchy in Figure 2.4(c), which has an additional non-material vertex (i.e., ADE , denoted with a

dotted line in the figure) representing the users that belong to both ABDE and ACDE . This factor-

ization saves one token. Figure 2.4(d) illustrates the keys assigned to users in the system and the

keys used to encrypt the tuples in relation PATIENTS in Figure 2.1.

The key derivation hierarchy obtained through the algorithm illustrated above is stored at the

CSP through a token catalog that keeps track, for each edge (vi,v j) in the hierarchy, of the label of

the source li and destination l j nodes and of the token value tokeni, j . When a user u needs to access

a tuple t, she need to retrieve a chain of tokens that, starting from her own key ku, ends in the key

used to encrypt t. To this purpose, user u interacts with the server. Given the label associated with

key ku and the tuple t that the user wants to access, the server first retrieves the label of the key

kt used to encrypt t. Then, it retrieves the shortest path from ku to kt in the key and token graph

through a shortest path algorithm, by properly querying the token catalog. The server then returns

to the user the encrypted tuple tk and the tokens composing the shortest path. The user will use

these tokens to derive key kt starting from her key ku, to finally decrypt tk.

2.2 Policy updates

In case of changes to the authorization policy, the encryption policy must be updated accordingly,

to guarantee their equivalence. This section illustrates how the selective encryption approach

presented above can enforce grant and revoke operations in the authorization policy.

ESCUDO-CLOUD Deliverable D3.1

16 Selective access

2.2.1 Over-encryption

Since the key used to encrypt each tuple t in r depends on the set of users who can access it, it

might be necessary to re-encrypt the tuples involved in the policy update with a different key that

only the users in their new access control lists know or can derive. A trivial approach to enforce a

grant/revoke operation on tuple t requires the data owner to: i) download tk from the CSP; ii) de-

crypt it; iii) update the key derivation hierarchy if it does not include a vertex representing the new

set of users in acl(t); iv) encrypt t with the key k ′ associated with the vertex representing acl(t);

v) upload the new encrypted version of t on the CSP; and vi) possibly update the public catalog

containing the tokens. For instance, consider the encryption policy in Figures 2.4(c-d) and assume

that user D is granted access to tuple t1. The data owner should download tk
1; decrypt it using key

kABC; insert a vertex representing acl(t1)=ABCD in the key derivation hierarchy; encrypt t1 with

kABCD; and upload the encrypted tuple on the CSP, together with the tokens necessary to users A,

B, C, and D to derive kABCD. This approach, while effective and correctly enforcing authorization

updates, leaves to the data owner the burden of managing the update and requires a heavy inter-

action between the data owner and the CSP. Also, re-encryption operations are computationally

expensive. To limit the data owner overhead, we propose to adopt two layers of encryption (each

characterized by its own encryption policy), to partially delegate to the CSP the management of

grant and revoke operations [DFJ+10].

• The Base Encryption Layer (BEL) is applied by the data owner before outsourcing the

dataset. A BEL key derivation hierarchy is built according to the authorization policy ex-

isting at initialization time. In case of policy updates, BEL is only updated by possibly

inserting tokens in the public catalog (i.e., edges in the BEL key derivation hierarchy). Note

that each vertex v in the BEL key derivation hierarchy has two keys: a derivation key k

(used for key derivation only), and an access key ka (used to encrypt tuples, but that cannot

be exploited for key derivation purposes).

• The Surface Encryption Layer (SEL) is applied by the CSP over the tuples that have already

been encrypted by the data owner at BEL. It dynamically enforces the authorization policy

updates by possibly re-encrypting tuples and changing the SEL key derivation hierarchy

to correctly reflect the updates. Differently from BEL, vertices in the SEL key derivation

hierarchy are associated with a single key ks.

Intuitively, with the over-encryption approach, a user can access a tuple t only if she knows the

keys used to encrypt t at BEL and SEL. Two basic approaches (i.e., Full_SEL and Delta_SEL)

can be adopted in the construction of the two levels, as briefly described in the following.

• With the Full_SEL approach, the SEL policy is initialized to reflect exactly (i.e., to repeat)

the BEL policy: for each derivation key in BEL a corresponding key is defined in SEL; for

each token in BEL, a corresponding token is defined in SEL. Note that the key derivation

function at BEL corresponds to a graph being isomorphic to the one existing at BEL. The

SEL policy initially models exactly the BEL policy, and hence by definition is correct (at

initialization time) with respect to the access control policy. When the existing authorization

policy changes, the SEL policy is updated to reflect the grant/revoke operation. Hence, at

any time, the BEL level enforces an encryption policy that is equivalent to the authorization

policy.

ESCUDO-CLOUD Deliverable D3.1

Section 2.2: Policy updates 17

• With the Delta_SEL approach, the SEL policy is initialized to not carry out any over-

encryption. Hence, at initialization time the SEL level does not add any protection, but

enforces a double encryption only when a change in the existing authorization policies of a

data owner is requested.

Depending on whether the Full_SEL or Delta_SEL approach is employed, the over-encryption

operation is performed in two different ways. In the Full_SEL case, the SEL encryption layer is

employed to deny the access to a tuple t to all the users but the ones in acl(t). This is done regard-

less of the users being allowed or not to access t, through being able to derive the related BEL key.

By contrast, in the Delta_SEL approach, the locking effect of the SEL layer is employed only in

order to limit the access rights granted by the BEL keys owned by no longer authorized users.

Both the Full_SEL and the Delta_SEL approaches produce a correct two layer encryption:

given a correct encryption policy at the BEL level, both the approaches produce a SEL level such

that the encryption policies at the two levels (jointly) enforce the authorizations. The reason for

considering both the approaches lies in the different performance and protection guarantees they

enjoy. In particular, Full_SEL always requires double encryption to be enforced (even when au-

thorizations remain unvaried), thus doubling the decryption load of users for each access. By con-

trast, the Delta_SEL approach requires double encryption only when actually needed to enforce

a change in the authorizations. However, as we will see in Section 2.2.3, the Full_SEL approach

provides more protection as it is not affected by a risk of information exposure characterizing the

Delta_SEL approach. The choice between one or the other can then be a trade-off between costs

and resilience to attacks.

We note that, besides the Full_SEL and Delta_SEL approaches, a third strategy could be

possible, where the authorization enforcement is completely delegated at the SEL level and the

BEL simply applies a uniform over-encryption (i.e., with the same key released to all users) to

protect the plaintext content from the CSP’s eyes. However, this latter approach is of no interest

as it presents a significant exposure to collusion (see Section 2.2.3).

2.2.2 Grant and revoke

Adopting the two-layer encryption approach illustrated above, grant and revoke operations over

an authorization policy are enforced as follows.

• Grant. When user u is granted access to tuple t, she needs to know the key used to encrypt

t at both BEL and SEL. Hence, the data owner adds a token in the BEL key derivation

hierarchy from the key of user u (i.e., key of the vertex representing u) to the access key

used to encrypt t (i.e., the vertex representing acl(t) at initialization time). The owner

then asks the CSP to update the key derivation hierarchy at SEL and to possibly re-encrypt

tuples. If we adopt a Full_SEL approach, tuple t is encrypted at SEL with the key of the

vertex representing acl(t)∪{u} (which is possibly inserted into the hierarchy). Besides t,

also other tuples may need to be re-encrypted at SEL to guarantee the correct enforcement

of the policy update. In fact, tuples that are encrypted with the same key as t at BEL and

that user u is not allowed to read must be encrypted at SEL with a key that u does not know

(and cannot derive). The data owner must then make sure that each tuple ti sharing the BEL

encryption key with t are encrypted at SEL with the key of the vertex representing acl(ti). If,

on the contrary, we adopt a Delta_SEL approach, only tuple t does not need to be encrypted

at SEL, since BEL already provides access only to authorized users. On the contrary, each

ESCUDO-CLOUD Deliverable D3.1

18 Selective access

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC
✞✞✞✞✞✞✞✞✞✞ �� ��

�� ��ABCDE

�� ��
�� ��D // ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A kA

B kB

C kC

D kD

E kE

tuple key

t1 ka
ABC

t2 ka
ABC

t3 ka
BC

t4 ka
ABDE

t5 ka
ABCDE

t6 ka
ACDE

t7 ka
A

t8 ka
D

(a) BEL

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC✞✞✞✞✞✞✞✞✞✞ �� ��
�� ��ABCDE

�� ��
�� ��D // ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A ks
A

B ks
B

C ks
C

D ks
D

E ks
E

tuple key

t1 ks
ABC

t2 ks
ABC

t3 ks
BC

t4 ks
ABDE

t5 ks
ABCDE

t6 ks
ACDE

t7 ks
A

t8 ks
D

(a) SEL

Figure 2.5: Encryption policies at BEL and SEL, equivalent to the access control policy in Fig-

ure 2.2

tuple ti sharing the BEL encryption key with t must be encrypted at SEL with the key of

the vertex representing acl(ti). For instance, consider the access matrix in Figure 2.2 and

the encryption policies at BEL and SEL enforcing it in Figure 2.5, and assume that user D is

granted access to tuple t1. Figure 2.6 illustrates the encryption policies at BEL and SEL after

the enforcement of the grant operation, assuming to apply a Full_SEL strategy. To enforce

this change in the access control policy, the data owner must first add a token that permits

user D to derive the access key of vertex ABC (ka
ABC) used to encrypt t1 at BEL (dotted edge

in the figure). Also, she will ask the CSP to update the SEL key derivation hierarchy to add

a vertex representing ABCD. Tuple t1 is then over-encrypted at SEL with the key of this new

vertex.

• Revoke. In both Full_SEL and Delta_SEL, when user u loses the privilege of accessing

tuple t, the data owner simply asks the CSP to re-encrypt (at SEL) the tuple with the key

associated with the set acl(t)\{u} of users. If the vertex representing this set of users is not

represented in the SEL key derivation hierarchy, the CSP first updates the hierarchy inserting

the new vertex, and then re-encrypts the tuple. For instance, consider the encryption policies

at BEL and SEL in Figure 2.6 and assume that the data owner revokes B the privilege to

access t4. The data owner requires the CSP to change SEL (BEL is not affected by revoke

operations) to guarantee that tuple t4 is encrypted with a key that user B cannot derive. To

this aim, t4 is re-encrypted with key ks
ADE . Figure 2.7 illustrates the encryption policies at

BEL and SEL after the enforcement of the revoke operation, assuming to apply a Full_SEL

approach. Note that vertex ABDE is removed from the hierarchy since it is neither necessary

for policy enforcement nor useful for reducing the number of tokens.

ESCUDO-CLOUD Deliverable D3.1

Section 2.2: Policy updates 19

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC
✞✞✞✞✞✞✞✞✞✞ �� ��

�� ��ABCDE

�� ��
�� ��D //

::

ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A kA

B kB

C kC

D kD

E kE

tuple key

t1 ka
ABC

t2 ka
ABC

t3 ka
BC

t4 ka
ABDE

t5 ka
ABCDE

t6 ka
ACDE

t7 ka
A

t8 ka
D

(a) BEL

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC //�� ��

�� ��ABCD

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC✞✞✞✞✞✞✞✞✞✞ �� ��
�� ��ABCDE

�� ��
�� ��D //

>>

ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A ks
A

B ks
B

C ks
C

D ks
D

E ks
E

tuple key

t1 ks
ABCD

t2 ks
ABC

t3 ks
BC

t4 ks
ABDE

t5 ks
ABCDE

t6 ks
ACDE

t7 ks
A

t8 ks
D

(a) SEL

Figure 2.6: Encryption policies at BEL and SEL in Figure 2.5 after granting D access to t1

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC

�� ��
�� ��B

##❍
❍❍

❍❍
//�� ��
�� ��ABDE

&&◆◆
◆◆

◆◆

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC
✞✞✞✞✞✞✞✞✞✞ �� ��

�� ��ABCDE

�� ��
�� ��D //

::

ADE

AA☎☎☎☎☎☎☎☎☎☎ //�� ��
�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A kA

B kB

C kC

D kD

E kE

tuple key

t1 ka
ABC

t2 ka
ABC

t3 ka
BC

t4 ka
ABDE

t5 ka
ABCDE

t6 ka
ACDE

t7 ka
A

t8 ka
D

(a) BEL

�� ��
�� ��A //

��❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
❃❃

❃❃
�� ��
�� ��ABC //�� ��

�� ��ABCD

�� ��
�� ��B

##❍
❍❍

❍❍

--❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩

�� ��
�� ��C //

,,❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳
�� ��
�� ��BC

CC✝✝✝✝✝✝✝✝✝✝ �� ��
�� ��ABCDE

�� ��
�� ��D //

>>

�� ��
�� ��ADE //�� ��

�� ��ACDE

88♣♣♣♣♣♣

�� ��
�� ��E

55❥❥❥❥❥❥❥❥❥❥❥❥

user key

A ks
A

B ks
B

C ks
C

D ks
D

E ks
E

tuple key

t1 ks
ABCD

t2 ks
ABC

t3 ks
BC

t4 ks
ADE

t5 ks
ABCDE

t6 ks
ACDE

t7 ks
A

t8 ks
D

(a) SEL

Figure 2.7: Encryption policies at BEL and SEL in Figure 2.6 after revoking B access to t4

ESCUDO-CLOUD Deliverable D3.1

20 Selective access

CSP’s view User’s view

open locked SEL-locked BEL-locked

(a) (b) (c) (d) (e)

Figure 2.8: Possible views on a tuple t

2.2.3 Exposure evaluation

Since the management of (re-)encryption operations at SEL is delegated to the CSP, there is the

risk of collusions with users. In fact, by combining their knowledge, a user and the CSP can

possibly decrypt tuples that neither the CSP nor the user can access. For instance, with reference

to the encryption policy in Figure 2.7, the CSP and user D can access to tuple t2 by combining

their knowledge. In fact, this tuple is encrypted with access key ka
ABC at BEL, known to user D as

it is used to encrypt t1, and with key ks
ABC at SEL, known to the CSP. Collusion represents a risk to

the correct enforcement of the authorization policy but, as will be clarified in the following, such

risk is limited, well-identifiable, and possible to mitigate.

In order to model the information leakage due to collusions, we assume that users are not

oblivious (i.e., they have the ability to store and keep indefinitely all information they were entitled

to access). To examine the different views that each user can have on a tuple t, we employ a

graphical notation with tuple t in the center and with fences around t denoting the barriers to the

access imposed by the knowledge of the keys used for t’s encryption at both the BEL level (inner

fence) and the SEL level (outer fence). The fence is continuous if there is no knowledge of the

corresponding key and it is discontinuous otherwise.

Figure 2.8(a) shows the view of the CSP itself, which knows the SEL-level key, but does not

have access to the BEL-level key. Figures 2.8(b-e) represent the views of the users: the open view

corresponds to the view of authorized users, while the remaining ones (locked, SEL-locked,

BEL-locked) show the views of non-authorized users.

Collusion can take place every time two entities, combining their knowledge (i.e., the keys

known to them) can acquire knowledge on the content of a tuple that neither of them is authorized

to access. Therefore, users having the open view need not be considered as they have nothing to

gain in colluding (they already access t). Following the same line of reasoning, users having the

locked view will not be considered, since they have nothing to offer. The only possible scenario

where collusion can happen is when two parties (the CSP and a user, or two users) having the

BEL-locked and SEL-locked view over a tuple t share their knowledge of the SEL and BEL

key used to protect t to gain access to a tuple that none of them is authorized to view. In the

Full_SEL approach, no one but the CSP can have a BEL-locked view, while only users can have

a SEL-locked view. In the Delta_SEL approach instead each user has the BEL-locked view over

the tuples she is not authorized to access at initialization time.

There are only two reasons for which a user (in the Full_SEL or in the Delta_SEL scenario)

can have the SEL-locked view on a tuple, as described in the following.

• Revoke. The user was previously authorized to access the tuple and the authorization was

ESCUDO-CLOUD Deliverable D3.1

Section 2.3: Support for write privileges 21

then revoked. In this case, since the user is supposed to be non oblivious, she has no gain

in colluding with the CSP. It is therefore legitimate to consider this case ineffective with

respect to collusion risks.1

• Policy split. The user has been granted the authorization for tuple t ′ that was, at initialization

time, encrypted with the same key as t (i.e., acl(t ′)⊆ acl(t)), leaving t SEL-locked [DFJ+07,

DFJ+10]. In this situation, the user has never had access to t and must not be able to gain it,

therefore there is indeed exposure to collusion.

It is interesting to note that the Full_SEL approach is exposed only to collusion between the

CSP, holding the BEL-locked view over a t, and a user who acquired the SEL-locked view

over t as a consequence of a policy split. The Delta_SEL approach is instead also exposed to

the misbehavior of a single curious (planning-ahead) user. In fact, every user initially has the

BEL-locked view over the tuples she is not authorized to access. This view can then evolve in

the open view if she is granted access to t, or in the SEL-locked view she is granted access to t ′

that is encrypted with the same key as t at initialization time. Therefore, although more efficient

as it limits the adoption of double encryption, Delta_SEL is more exposed to risks than Full_SEL

approach. It is however important to note that in both cases (Full_SEL and Delta_SEL), exposure

is limited to resources that have been involved in a policy split to make other resources, encrypted

with the same BEL key, available to the user. Exposure is therefore limited and well identifiable.

This allows the owner to possibly counteract it via explicit selective re-encryption or by proper

design (i.e. organizing resources in such a way to minimize policy splits).

2.3 Support for write privileges

The solution described in the previous section, while effectively enforcing read privileges and

updates to them, assumes the outsourced relation to be read-only (i.e., only the owner can modify

tuples). To allow the data owner to selectively authorize other users to update the outsourced data,

this approach has been complemented with a specific technique to manage write privileges.

2.3.1 Write tags

A straightforward solution for enforcing write authorizations might consist in simply outsourcing

to the external server the authorization policy (for write privileges) as is. The server would then

perform traditional (authorization-based) access control. This solution would however not be in

line with the goal of outsourcing, aimed at minimizing the server’s involvement and responsibility

in access control enforcement. We then propose to exploit selective encryption for the enforcement

also of write authorizations, with the cooperation of the CSP.

Our solution associates each tuple with a write tag (i.e., a random value independent from

the tuple content) defined by the data owner [DFJ+13]. Access to write tags is regulated through

selective encryption: the write tag of tuple t is encrypted with a key known only to the users

authorized to write t (i.e., the users specified within its write access list, denoted aclw(t)) and by

the CSP. In this way, only the CSP and authorized writers have access to the plaintext value of the

write tag of each tuple. The CSP will then accept a write request on a tuple when the requesting

user proves knowledge of the corresponding write tag.

1We assume, without loss of generality, that any time a tuple is updated, the data owner encrypts it with another

BEL key as if it were a new tuple.

ESCUDO-CLOUD Deliverable D3.1

22 Selective access

�� ��
�� ��A

))

''

// AS
�� ��
�� ��ABC

�� ��
�� ��B

''❖❖
❖❖❖

❖❖❖
❖ //�� ��

�� ��ABDE

$$❏
❏❏

❏❏

�� ��
�� ��C //

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱ �� ��
�� ��BC

==③③③③③③③③③③③③ // BCS
�� ��
�� ��ABCDE

S

��

��

44

JJ

**�� ��
�� ��D

))// DS
�� ��
�� ��ADE

@@✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂ &&// ADES
�� ��
�� ��ACDE

CC✞✞✞✞✞✞✞✞✞✞

�� ��
�� ��E

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ // ES

user key

A kA

B kB

C kC

D kD

E kE

S kS

tuple read_key write_key

t1 kABC kAS

t2 kABC kBCS

t3 kBC kBCS

t4 kABDE kADES

t5 kABCDE kDS

t6 kACDE kES

t7 kA kAS

t8 kD kDS

(a) (b) (c)

Figure 2.9: Encryption policy in Figures 2.4(c-d) extended to the enforcement of write privileges

Since the key used for encrypting the write tag of a tuple has to be shared between the CSP

and the tuple writers, it is necessary to extend the key derivation hierarchy with the storing CSP.

However, the CSP cannot access the outsourced tuples in plaintext, and hence it cannot be treated

as an additional authorized user (i.e., with the ability of deriving keys in the hierarchy). The keys

used to encrypt write tags are then defined in such a way that: i) authorized users can compute

them applying a secure hash function to a key they already know (or can derive via a sequence

of tokens); and ii) the CSP can directly derive them from a key kS assigned to it, through a token

specifically added to the key derivation hierarchy. Note that keys used for encrypting write tags

cannot be used to derive other keys in the hierarchy. For instance, consider the encryption policy

in Figures 2.4(c-d) and assume that aclw(t1)=aclw(t7)=A, aclw(t2)=aclw(t3)=BC, aclw(t4)=ADE ,

aclw(t5)=aclw(t8)=D, and aclw(t6)=E . Figure 2.9(a) illustrates the key derivation hierarchy, ex-

tended with the key kS assigned to the CSP S and the keys necessary to encrypt write tags (the

additional vertices and edges are dotted in the figure). Figures 2.9(b-c) summarize the keys as-

signed to users and to the CSP, and the keys used to encrypt the tuples in relation PATIENTS and

their write tags, respectively.

2.3.2 Write policy updates

The over-encryption approach (Section 2.2.2), while effective for enforcing updates to a read au-

thorization policy, is not suited for the enforcement grant and revoke of write authorizations. In

fact, grant and revoke of write privileges need to operate on write tags, which are known to both

authorized writers and to the CSP. Alternative solutions are therefore more effective and efficient.

The solution we propose to enforce changes in write authorization operates as follows [DFJ+13].

• Grant. When user u is granted the privilege to modify tuple t, the write tag of t is encrypted

with a key known to the CSP and the users in aclw(t)∪{u}. If the key derivation hierarchy

does not include it, such a key is created and properly added to the hierarchy. For instance,

with reference to the encryption policy in Figure 2.9, assume that user B is granted the write

privilege over t4. The write tag of the tuple needs to be encrypted with key kABDES, which is

inserted into the key derivation hierarchy, while key kADES can be removed.

• Revoke. When user u is revoked the write privilege over tuple t, a fresh write tag must be

defined for t, having a value independent from the former tag (e.g., it can be chosen adopting

a secure random function). This is necessary to ensure that u, who is not oblivious, cannot

exploit her knowledge of the former write tag of tuple t to perform unauthorized write

ESCUDO-CLOUD Deliverable D3.1

Section 2.4: Implementation of the proposed approach 23

operations. After the tag has been generated, it is encrypted with a key known to the CSP

and to the users in aclw(t)\{u}. For instance, with reference to the encryption policy in

Figure 2.9, assume that user C is revoked the write privilege over t3. The write tag of the

tuple needs to be changed and encrypted with key kBS, which should be inserted into the key

derivation hierarchy.

Note that, since the CSP is authorized to know the write tag of each and every tuple to cor-

rectly enforce write privileges, the data owner can delegate to the storing CSP both the generation

and encryption (with the correct key) of the write tag of the tuples [DFJ+13]. Even if the CSP

is assumed to be trustworthy in the management of write operations, it is important to provide a

means to the data owner to verify that the CSP and users behaved correctly. In fact, the CSP could

permit (for laziness or maliciously) malicious users to modify resources that they are not autho-

rized to write. It is however possible to enable the data owner, authorized writers, and authorized

readers to detect unauthorized modifications by complementing each tuple with proper integrity

verification tags computed using HMAC functions (e.g., [DFJ+13]).

2.4 Implementation of the proposed approach

The approach discussed above will be the basis for the realization in OpenStack of a transparent

service for the encryption of objects with encryption keys that are only accessible to the users who

appear in the access control list associated with the object. The work uses as a foundation the

implementation of the tools for the protection of data at rest developed within WP2 and extends

them to the consideration of the access control policy and its evolution.

OpenStack is an open source project that aims at becoming an operating system for the cloud.

It integrates a large collection of components, offering support to many tasks that are executed by

the managers of a cloud infrastructure. For instance, components exist that support the activation

of virtual machines (Nova), monitor their load and responsiveness (Ceilometer), help configure

the network (Neutron), offer Web interfaces to the configuration of services (Horizon). The com-

ponents that are of major interest for the realization of an encryption service consistent with the

access policy are Swift, Keystone, and Barbican.

• Swift provides object storage to every component of the architecture and to applications

built using OpenStack as a target. It uses clusters of standardized servers capable of storing

petabytes of data. It uses a high level of redundancy in order to provide high availability.

The access to objects occurs through a REST API.

• Keystone offers identity management services for the framework. It provides a central di-

rectory of users mapped to the OpenStack services they can access. It acts as a common

authentication system across the cloud operating system and can integrate with existing

backend directory services like LDAP. It supports multiple forms of authentication includ-

ing standard username and password credentials and token-based systems.

• Barbican offers a key management service, usable by components internal to the OpenStack

system and by external applications. It manages the secure storage and provisioning of

secrets, such as passwords, encryption keys and X.509 Certificates. Consistently with the

approach used by many components in OpenStack, it offers a REST API.

ESCUDO-CLOUD Deliverable D3.1

24 Selective access

ESCUDO-CLOUD Use Case 1 aims at extending the support that OpenStack provides to the

management of security requirements. The realization of the policy-based encryption services is

one of the contributions that ESCUDO-CLOUD aims at producing in this domain.

The preliminary design of the implementation of the policy-based access control services for

OpenStack is described in Work Document W2.2. This activity indeed spans both WP2 and WP3,

because we combine an encryption-based protection of outsourced data (investigated by Task

T2.1) with the support for the specification and evolution of the access control policy (investi-

gated by Task 3.1).

It is to note that currently Swift only offers the support for access control at a relatively coarse

level. Resources in Swift are organized into Accounts, Containers (within accounts), and Objects

(within containers). Access control lists can be specified at the level of accounts and containers,

and objects inherit the acl of the containers they are in. The acls are represented as attributes of the

containers, accessible using methods that return the properties of the container, in a JSON format.

The support for encryption-based access control introduces additional meta-containers, one per

every user, which are responsible to store the tokens that permit the derivation of the encryption

keys. An important goal of the design of the system is to make the service transparent to current

applications. The tokens are put into the meta-containers and read from them depending on the

values of the acls associated with the containers.

To support the insertion into the meta-containers of the tokens, a service is added to the Open-

Stack services. RabbitMQ, which is a messaging solution that offers persistence, is used to offer

guarantees that the keys used to encrypt a resource are actually available to users interested in

reading it. The persistence offered by RabbitMQ provides a guarantee of eventual consistency,

which is consistent with the overall design of Swift.

More details on the design and implementation of these solutions can be found in Work Docu-

ment W2.2. The work document initially provides a synthetic description of OpenStack and then

describes the design of the software tools implementing the protection of data at rest in Swift.

Work Document W2.2 presents only some initial considerations about the implementation of the

container-level access control services based on encryption. A more extensive design will appear

in Deliverable D2.2, which is due at M18.

ESCUDO-CLOUD Deliverable D3.1

3. Selective access for supply chain management

Following the supply chain nature of Use Case 2, we will apply the approach introduced in Sec-

tion 2.1 for selective access to a supply chain scenario. For this, we will first outline a parts

exchange scenario in Section 3.1. Afterwards, we will introduce i) how RFID tags can be uti-

lized for authentication, and ii) how selective access is applied for ensuring authorization among

multiple supply chain partners who are sharing data on multiple supply chain items in a single

cloud architecture. We are confident that the combination of RFID authentication and selective

access has the potential to overcome the challenges of integrity and security between supply chain

collaborators who are utilizing a cloud architecture, thereby enabling new business opportunities

through selective data sharing.

3.1 Problem statement

Imagine a set of mobile physical objects O1, ...,Om each traversing a (potentially different) subset

of players X1, ...,Xn. Each player Xi collects information about each object O j it handles (e.g.,

time, place, type of action, etc.) and stores this information in a central cloud database. Later

other players may ask to access an object’s data in this database. This scenario is common place

in modern supply chains [SBE01]. Radio frequency identification (RFID) technology [Fin03]

provides the means to equip and capture each object with an unique identifier. Data commonly

collected typically includes time, location and type of handling (e.g., packing, unpacking, receiv-

ing, or shipping). On the one hand, combining these data from many companies (just predecessor

and successor is almost always insufficient) along the supply chain enables or improves many eco-

nomically attractive collaborative applications, such as batch recalls [WK08], counterfeit detection

[STF05], benchmarking and analytics [Ker08, KDSB09, KOW10] or estimated arrival forecasts

[CE09]. On the other hand, too liberal sharing of this information allows espionage on one’s

business operations [KTF08, DS08]. We observe this as a major obstacle to wider adoption of

data sharing. Companies are usually part of many supply chains (even for the same product) all

managed using a central cloud database. Specifying access control rules for this database can be

very delicate. Consider the following two examples. Imagine a supplier S1 selling a product p1

to buyers B1 and B2. If B1 has access to all scheduled orders for p1, she can infer the volume of

future business with B2. This can be very sensitive, in case S1 has to cancel some orders due to

a temporary capacity reduction (e.g., a machine failure). B1 could then infer whether B2’s orders

are treated preferentially. While this decision can be based on local information in the case of

bridging only one supply chain stage, it becomes difficult in case of a tier-2 supplier. Imagine

a supplier S2 selling product p2 to S1 which is then used to produce p1. If either B1 or B2 con-

tacts S2 requesting data, S2 cannot decide which object was shipped to which buyer. If S2 would

grant access to all items, B1 could infer again the volume of business of B2. A naturally emerg-

ing access rule is to share data with partners about shared objects, that is, objects both partners

25

26 Selective access for supply chain management

have possessed. This implements the important business concept of visibility, that is, each partner

gains (additional) information about how its (entire) supplies are produced and how its (entire)

products are used, but still provides a separation between different supply chains merging at one

company. Furthermore it can be easily adopted reciprocally, i.e. “I give you access, if you give me

access”, providing a fair allocation of cost, risk and benefits. We distinguish between downstream

and upstream visibility. In downstream visibility a company is allowed to access data associated

with its objects shipped to its supply chain partners (at those partners). Upstream visibility is the

reverse and a company is allowed to access data associated with objects it has received from its

supply chain partners (again at those partners). Setting these visibility policies correctly using

existing access control models can be excruciatingly difficult, since the access control matrix can

be huge (n×m) and each object can have a different trajectory (Section 3.2.2). First, we show

how these policies can be implemented using a novel attribute in the framework of attribute-based

access control (Section 3.2.3). Then we show how to implement this novel protocol with standard

passive RFID tags (Section 3.3.1) and secure the data in a central cloud architecture by selective

access (Section 3.3.2).

3.2 Supply chain visibility policies

3.2.1 Definition

We first formally define the trajectory of an object O j and then define upstream and downstream

visibility policies. Let there be n players Xi ∈ X = {X1, ...,Xn}. We model the trajectory L(O j) =

〈L j,R j〉 of object O j as a totally ordered set consisting of elements in the set L j ⊆X and a binary

relation R j ⊆ L j×L j. The players represent the spatial domain of the trajectory and the players

in L j are those that have handled (possessed) the object O j. The relation R j models the temporal

domain of the trajectory. Simply speaking, a player Xi is ranked lower than a player Xi′ in L(O j),

that is, 〈Xi,Xi′〉 ∈ R j, if Xi handled the object O j earlier than Xi′ . We write σ(Xi,L(O j)) for a

predicate that can be used to compute the rank of player Xi in L(O j) and |σ(Xi,L(O j))| for the

evaluated rank itself. Then, |σ(Xi,L(O j))| < |σ(Xi′ ,L(O j))| iff 〈Xi,Xi′〉 ∈ R j. If player Xi did

not handle the object O j, then |σ(Xi,L(O j))| is undefined and any order relation on the natural

numbers, e.g. both < and >, should always evaluate to false. We say the least element in L(O j) is

the source of object O j and the top most element is its destination. We can now capture the notion

of being part of multiple supply chains that we briefly informally introduced in the introduction. A

player Xi is part of multiple supply chains, if at least two objects that it handled have been handled

by at least one player each - both upstream or downstream - which did not handle both objects.

Formally iff Xi is part of two supply chains, then there exist two other players Xi′ and Xi′′ and two

objects O j and O j′ , such that:

Xi ∈ L j,Xi ∈ L j′

Xi′ ∈ L j,Xi′ /∈ L j′

Xi′′ /∈ L j,Xi′′ ∈ L j′

(|σ(Xi,L(O j))|< |σ(Xi′,L(O j))|∧ |σ(Xi,L(O j′))|< |σ(Xi′′ ,L(O j′))|)∨

(|σ(Xi′ ,L(O j))|< |σ(Xi,L(O j))|∧ |σ(Xi′′,L(O j′))|< |σ(Xi,L(O j′))|)

For simplicity we omit modeling a player handling an object more than once (e.g., product

ESCUDO-CLOUD Deliverable D3.1

Section 3.2: Supply chain visibility policies 27

returns), although visibility policies are still valid and applicable. Now a player Xi is requesting

information from player Xv (verifier) about object O j stored in the cloud database. Player Xv

intercepts this request and performs an access control decision. The intercepting component is

called a policy enforcement point (PEP) and the information about the request, e.g. the identity of

the requestor Xi and the unique identifier of the object O j are forwarded to the policy decision point

(PDP). The PDP compares the information to the policies in its store and returns its evaluation

decision (grant or deny) to the PEP. As will be detailed in Section 3.3.2 the PEP will enforce a

grant decision by re-encrypting its data on the object O j within the cloud database.

Definition 1 An upstream visibility policy grants (or denies) access to Xi for O j based on the

predicate evaluation

|σ(Xi,L(O j))|< |σ(Xv,L(O j)|.

Definition 2 A downstream visibility policy grants (or denies) access to Xi for O j based on the

predicate evaluation

|σ(Xv,L(O j))|< |σ(Xi,L(O j)|.

3.2.2 Management of visibility policies

Existing access control models are faced with a serious scalability problem when protecting object-

level data with visibility policies. There is a huge number of items (m) and each item requires

unique protection corresponding to its trajectory. Its authorization matrix

player × object × access

is therefore huge and diverse at the same time, since there exists no natural grouping of objects.

In order to simplify administration of visibility policies we can reduce the authorization matrix.

Since the concept of visibility is independent of the players on the trajectory of an object, we can

abstract from players in the authorization matrix and reduce it to

object × visibility policy

Being even more restrictive we could further group objects, e.g., one can set a visibility policy for

all objects of one product group. This reduces the authorization matrix to

object-group × visibility policy

While this model is very restrictive, it is definitely also very simple and the administration effort

is easily practically manageable in many real-world supply chains.

3.2.3 ABAC integration

Fortunately, we can combine this visibility policy authorization matrix with the expressiveness of

sophisticated access control models without necessarily sacrificing simplicity of administration.

The unifying model is attribute-based access control (ABAC) [NIS09]. This unification is im-

portant, since visibility policies can efficiently express access control policies necessary in many

supply chains, but they are not sufficient in many cases. Companies may want to grant access to

their object data to players outside of the supply chain. Examples are auditors or other service

providers that provide outsourced services operating on object data. Also companies may want to

restrict access to partners, although they are part of the supply chain. Examples are competitors or

otherwise non-cooperating organizations. We therefore integrate the notion of visibility policies

into the ABAC framework. Our integration is efficient and does not re-introduce the scalability

problems described in Section 3.2.2. The ABAC framework integrates the features and expressive

ESCUDO-CLOUD Deliverable D3.1

28 Selective access for supply chain management

power of many access control models, including the classics RBAC, discretionary access con-

trol (DAC), and mandatory access control (MAC). We briefly review the policy model from Yuan

and Tong [YT05] in a simplified form - we leave out environments and their attributes that are

necessary to also include access control models such as TBAC or GTR-BAC.

• There are subjects and resources.

• SAl(1≤ l ≤ L) and RAm(1 ≤ m ≤M) are the existing attributes for subjects and resources,

respectively;

• ATT R(s) and AT T R(r) are attribute assignment relations for subject s and resource r, re-

spectively:

ATT R(s)⊆ SA1×SA2× ...×SAL

ATT R(r)⊆ RA1×RA2× ...×RAM

• A policy rule that decides on whether a subject s can access a resource r, is a Boolean

function of s’s and r’s attributes:

access(s,r)← f (ATT R(s),AT T R(r))

Given the attribute assignments of s and r, if the function f evaluates to true, then access to

the cloud database resource entries is granted via re-encryption; otherwise access is denied

as no re-encryption occurs.

Identity itself and roles become attributes of the subject and ownership in DAC becomes an at-

tribute of the resource. Also, in MAC clearance becomes an attribute of the subject and classifica-

tion an attribute of the resource. In our case subjects are the players Xi and the resources are objects

O j, but for mobile physical objects the situation is unfortunately slightly more complicated. The

predicate σ(Xi,L(O j)) in visibility policies depends on both player (Xi) and object (O j). There-

fore if we want to express upstream or downstream visibility as an attribute, we need to introduce

a new type of attribute into the ABAC model. Our extension of the model is as follows:

• SRAk(1≤ k ≤ K) are the existing attributes for pairs of subjects and resources.

• ATT R(s,r) is the attribute assignment relation for a pair of subject s and resource r:

AT T R(s,r)⊆ SRA1×SRA2× ...×SRAK

• We extend the Boolean function for policy evaluation to s’s, r’s and both s and r’s attributes:

access(s,r)← f (AT T R(s),AT T R(r),AT T R(s,r))

We instantiate our ABAC model for visibility policies with the following two attributes: one for

downstream and one for upstream partners.

SRAh =“downstream” SRAh+1 =“upstream”

ESCUDO-CLOUD Deliverable D3.1

Section 3.3: RFID-authentication and selective encryption policy 29

We can implement the assignment of these attributes as an evaluation of the predicates. When re-

ceiving s = Xi,r = O j,σ(Xv,L(O j)), and σ(Xi,L(O j)) in an access request, player Xv can evaluate

the predicates and assign corresponding attributes.

|σ(Xv,L(O j))|< |σ(Xi,L(O j)| ⇒ ATT R(s,r) = “downstream”

|σ(Xi,L(O j))|< |σ(Xv,L(O j)| ⇒ ATT R(s,r) = “upstream”

Our visibility policies can then be formulated as

access(s,r)← “downstream” ∈ ATT R(s,r)∨ “upstream” ∈ ATT R(s,r)

We can also include or exclude supply chain partners as in our examples above

access(s,r)←“auditor” ∈ ATT R(s)∨ ((“downstream” ∈ ATT R(s,r)∨

“upstreams” ∈ ATT R(s,r))∧ “competitor” /∈ ATT R(s))

3.3 RFID-authentication and selective encryption policy

We now introduce a two step solution to enforce the formulated attribute based access control.

First, an authorization phase executed between a requestor and a data owner within a supply

chain. Second, an authorization step performed by the data owner after successful authentica-

tion. While authentication is performed among supply chain members, authorization is performed

strictly between the data owner and the central cloud repository to enforce selective access through

re-encryption. After the authorization has been performed, the requestor can retrieve the demanded

data from the central repository through a direct index lookup. As will be detailed in Section 3.3.1

the approach assumes that item level data sharing is performed through a single cloud architecture

and that a trusted third party is incorporated into the authentication step.

3.3.1 Authentication via RFID

In order to enforce visibility policies the player must be able to reliably compute the predicate

σ(Xi,L(O j)) of an object’s trajectory and supply it as an attribute in the access request to the

PDP. This is challenging, since the necessary information about the trajectory is distributed across

multiple players and need not be known to the player. Each player knows by default only her pre-

decessor and successor from physically moving the object, which is even insufficient to determine

its own rank in the trajectory. Therefore the requestor must supply the predicate, but of course

the information is unreliable, since she should not necessarily be trusted. The player must verify

the supplied predicate. This problem is an extension of the authentication problem in distributed

systems. Clearly authentication is a prerequisite for any access control, but as seen before our

predicate is an attribute of subject and resource, and as such common identity verification mech-

anisms fall short of solving the problem. Nevertheless, similar to the most common solutions for

the authentication problem in distributed scenarios, we can resort to cryptographic techniques. We

are concerned about physical objects (equipped with an RFID tag each) and a player needs to

prove possession of this object. Differently from the ownership authentication factors - “some-

thing you have” - our authentication must succeed even if the player is no longer in possession

of the object - “something you had”. This complicates the problem, since it rules out solutions

of simply interactively using RFID for access control [Bly99, SWE03]. The notion of (current)

ESCUDO-CLOUD Deliverable D3.1

30 Selective access for supply chain management

possession has been explored before and extended to securely verifying ownership of an RFID

tag [MSW05, Son08]. This concept already has many applications for mobile physical objects in

supply chains, but, e.g. for any form of analytics, authentication and possession are decoupled.

Also as pointed out in [vDMV09] these protocols still suffer from security flaws. The problem of

authenticating based on (past) possession of RFID tags has been first considered in [KS09]. Yet

these protocols do not allow implementing our predicate, but simply allow a decision on whether

an item has been in possession. They therefore do not allow a distinction between upstream and

downstream. Our authentication relies on a similar mechanism as the proofs of possession from

[GA07]. A proof of possession is in our terms a verifiable predicate which can be supplied during

the access request. Unfortunately all solutions proposed in [GA07] are either not reliable in our

attacker model or are not realizable in our system model. A different design is therefore needed.

System Model

We continue our model with multiple players, but restrict ourselves in this section to one object O j

which is the one considered in the access request. One player (Xv) is the designated verifier of the

predicate. We assume each player to be uniquely identifiable, and the availability of a public-key

infrastructure to securely distribute public keys for each player. Besides the basic capabilities for

communication, we only assume the availability of re-writable permanent storage on the RFID tag.

Passive tags (without own source of power) with up to 64 KBytes of storage are available [Fuj08]

and follow the EPC Gen 2 protocol which is commonly used in supply chains [EPC07]. Note

that we do not consider cryptographic capabilities on the RFID tag, such as symmetric encryption

[FWR05] or public-key cryptography [BGK+07, BBD+08, HWF08]. We emphasize that is a very

strong restriction of the solution space. It implies that the RFID tag cannot manage secret material,

such as cryptographic keys or even passwords. It therefore rules out any solution transferring

common concepts from distributed systems authentication. For example, signing challenges by

the RFID tag using message authentication codes or public-key signatures which significantly

simplify the problem cannot be implemented in our model. We do this in order to address the

security problems of existing and currently emerging deployments of RFID in supply chains which

do not yet have these cryptographic capabilities. Before the access request and the problem of

authentication, several operations are performed using the RFID tag. We use a simplified model

from [KS09]. Assume Trent (T) is a trusted third party (TTP) that supports players in obtaining

RFID tags. A natural choice is the RFID manufacturer. Note that Trent does not obtain any

additional information about the supply chain operation than any RFID manufacturer already does

now. Our authentication consists of the following algorithms or protocols.

Initialize: A player Alice requests a (or a set of) RFID tags from Trent. She can later use those to

attach to newly created objects.

Move: A player Alice moves an object to another player Bob. She updates the information stored

on the attached RFID tag. We emphasize that this operation does not require network access to

Trent or Bob.

Authenticate: The requestor sends a verifiable predicate σ(Xi,L(O j)) for access to the verifier.

The verifier makes an access control decision based on this predicate (and its policies).

Security Model

We assume secure and authenticated communication over the network, that is, between the play-

ers and Trent. We assume insecure communication with the RFID tag attached to the object. Our

ESCUDO-CLOUD Deliverable D3.1

Section 3.3: RFID-authentication and selective encryption policy 31

attacker controls the requestor (Xi) and may control any other player except the verifier (Xv) and

Trent (i.e., we consider almost arbitrary collusion). Our attacker is adaptive, that is, the set of

controlled players may change over time.

Definition 3 An admissible attacker A is a sequence of subsets Al ⊂ X(l = 1, ...,λ) of players

none of which contains the verifier (Xv) or Trent:

Al ∩{Xv,T}= /0.

Our main security guarantee is the non-forgeability of the verifiable predicate σ(Xi,L(O j)). We

state the following theorem.

Theorem 1 No admissible attacker can forge a verifiable predicate σ(Xi,L(O j)) for Xi ∈ ∪lAl

without possession of object O j by any Xi′ ∈ ∪lAl.

Note that it is impossible to prevent forgery for an attacker in possession of object O j. He can

simply physical move the object to Xi. Even without physical movement, it is impossible to prevent

an attacker from forgery, since she has access to all information (no trusted hardware) and can for

instance, relay signals from the RFID tag. An interesting problem not captured by Theorem 1

arises when considering an adaptive adversary, due to the fact the attacker controls a fix set of

parties. Assume that at time t1, Xi has possession of the object O j and the attacker A has not

compromised Xi, i.e. Xi /∈ At1
. Later at time t2 > t1 A compromises Xi, but now she should not be

able to perform forgery of predicates for object O j. We call this property non-transferability, since

the attacker wants to transfer the predicate from Xi to another player Xi′ . This property is similar

to forward secrecy in key agreement protocols [DVW92]. Non-transferability is important, since it

also prevents information leakages in the supply chain by otherwise trustworthy partners. For the

formal definition we synchronize the time between the attacker and the trajectory. For each rank

l = 1, ..., |L j| in the trajectory L(O j) there is a corresponding subset Al of the attacker A. Since we

cannot rely on cryptography on the RFID tag, we need to resort to different security measures. We

cannot achieve cryptographic security for non-transferability in our model, because the attacker

has access to all necessary information in the system at time t1 to produce a new system state

for time t2 which cannot be disproved easily. Instead we rely on detection and traceability where

more information is available. We refine Theorem 1 as follows.

Theorem 2 Let Σ be the set of valid verifiable predicates σ(Xi,L(O j)). No admissible attacker

can prevent detection of Xi ∈∪lAl,σ(Xi,L(O j))∈Σ after using a verifiable predicate σ(Xi′ ,L(O j)) /∈

Σ as long as

∀σ(Xi,L(O j)) ∈ Σ : Xi /∈ A|σ(Xi,L(O j))|

Protocols

The protocols implementing the authentication are actually quite simple. We only use public-key

signatures. Let SX () denote the signature with X ’s public key. Since we store the signatures on

the RFID tag, it is beneficial to use very short signatures (e.g., [BLS04]). Our protocols chain the

information along the object’s trajectory. Each supplier is vouching for her buyer, similar to fourth

factor authentication [BJR+06]. Fourth factor authentication relies on somebody you know in case

ESCUDO-CLOUD Deliverable D3.1

32 Selective access for supply chain management

other authentication factors have failed. Clearly a supplier knows her buyer and they trust each

other at least to the extend to engage in business. We therefore use this fourth factor to replace the

typical cryptographic authentication factor of knowledge - “something you know” - which is not

available on the RFID tag.

Initialize: The trusted third party Trent T sends to player Alice an RFID tag with identifier j

which contains in its storage the signature ST (j,A).

Move: A player Alice (A) wants to move an object to another player Bob (B). She appends to

the storage on the RFID tag the recipient’s identity (B) and her signature SA(j,B). Due to storage

restrictions on RFID tags we recommend to compress the identity information as much as possible

(e.g., using similar approaches as for abbreviation of URLs).

Authenticate: Let s1, ...,sk be the sequence of signatures stored on the RFID tag attached to object

O j. The requestor Xi sends as the verifiable predicate σ(Xi,L(O j)) this sequence s1, ...,sk. The

verifier Xv verifies that

1. sk conforms to SXik
(j,Xi).

2. For all l(1 < l < k) sl conforms to SXil
(j,Xil+1

).

3. s1 conforms to ST (j,Xi2).

4. For all l(1≤ l≤ k) sl is valid signature from Xil . If all checks are successful, then it evaluates

its policies to make the access decision.

Figure 3.1 provides an example of supply chain operations based on the introduced authentication

protocol. Assume a manufacturer M produces a good G. She first starts the Initialize protocol

by contacting the trusted third party Trent T and requesting an RFID tag. T chooses a tag with

identifier g, stores on the tag memory s1 = ST (g,M) and sends the RFID tag to M. M reads 〈s1〉

from the tag, stores it in its database and attaches the tag to the good G. Now M intends to ship G

to its distributor D. She starts the Move protocol and appends s2 = SM(g,D) to the tag’s memory.

M can then ship G to D. When D receives the good G, she reads 〈s1,s2〉 from the tag and stores

it in her database. Later D may ship G to the retailer R. In this Move protocol she appends

s3 = SD(g,R) to the tag’s memory. R reads 〈s1,s2,s3〉 from the tag of the received good G and

stores it in his database. First consider the situation of a downstream request when M requests

information from R, e.g., in order to collect sales data or analyze product returns. M and R run an

Authenticate protocol. M reads 〈s1〉 from her database and sends it along with g, M to R. R’s PEP

verifies the data in 〈s1〉. It extracts M, g and the number of signatures (1) from 〈s1〉. Then it looks

up its corresponding predicate σ(R,L(G)) = 〈s1,s2,s3〉 in its database and similarly extracts R, g

and the number of signatures (3).

3.3.2 Selective encryption within a supply chain scenario

In this section the selective encryption approach from Section 2.1 is applied to supply chain man-

agement. Consider again the simple supply chain illustrated in Figure 3.1, with T as TTP, M as

manufacturer, D as distributor and R as retailer. Assume M produces a good G and moves it to D,

who later moves it to R. As the good moves through the supply chain each player who possesses

it collects information about it. We assume the players agreed on a common set of information

(e.g., time, place, type of action etc.) that one can collect on an object, so that we can handle

this information as a tuple. In a decentralized supply chain this information is stored in a local

database. But in this case we want the information to be stored within a single cloud architecture

ESCUDO-CLOUD Deliverable D3.1

Section 3.3: RFID-authentication and selective encryption policy 33

Figure 3.1: Example of an object traversing a supply chain

database. Due to the information being sensitive each player first chooses for each object that she

handles a unique symmetric key kO and encrypts the tuple before storing it in the database. Since

the encryption policy requires that each user possesses only one encryption key, the player also

chooses a unique private key kU and generates a corresponding token according to the encryption

policy. This allows key derivation of kO from kU . As the token are public information stored in

the cloud database, the player retain only one key namely kU .

To apply the selective encryption policy to the supply chain we follow the steps of the RFID-

authentication protocol. We assume player P ∈ {M,D,R} has a private key kP. According to

Section 2.1 we also assume that each tuple ti has unique label li and the group G of users that has

access to it has unique label lG.

• Initialize: After receiving the RFID tag from T , M creates an object O. She chooses an

encryption key k1, collects information on O and stores the data as tuple t1 encrypted with

k1 in the database. Then M creates tokenM,1 = k1⊕h(kM , l1) and stores it in the database.

• Move: M sends O to D. D forwards O to R.

1. D generates a tuple t2 and encrypts it with a newly chosen key k2. Next, D creates

tokenD,2 = k2⊕h(kD, l2).

2. R generates a tuple t3 and encrypts it with a newly chosen key k3. Thereafter, R creates

tokenR,3 = k3⊕h(kR, l3).

Subsequent to initialize and move, the encryption policy of Section 2.1 is established. Due

to the the tuple owner of t being the unique user who has access to t at this point of time the

encryption policy is simple as illustrated in Figure 3.2.

• Authentication: Each player stores her information encrypted with a key that only she

knows. Other players must authenticate to the tuple owner to be granted access to the

information. Consider our example supply chain again and assume that M would like to

read t3. Then M has to authenticate to R using the RFID authentication protocol described

in Section 3.3.1. If the authentication is successful, R updates the access control list of t3,

granting access to M. Now the group MR has access to t3, therefore the tuple must be re-

encrypted with a key kMR that both M and R are able to derive with the corresponding token.

However, since we are giving access to M there is no need to decrypt and re-encrypt t3 with

a new key. Hence in this case kMR = k3 holds and the token that R uses to derive it remains

unchanged. The only token to be added is the token for M. Since the token computation

contains private information, the two players have to collaborate to compute it. Player M

ESCUDO-CLOUD Deliverable D3.1

34 Selective access for supply chain management

uses her private key kM and the label of the group MR, which is public information, to

compute h(kM , lMR). Afterwards she sends it securely to R. Finally R computes the token

kMR⊕h(kM, lMR) and stores it in the public catalog.

t1 t2 t3

M 1 0 0

D 0 1 0

R 0 0 1

user key

M kM

D kD

R kR

tuple key

t1 k1

t2 k2

t3 k3

source target token

lM l1 k1⊕h(kM ,l1)

lD l2 k2⊕h(kD ,l2)

lR l3 k3⊕h(kR,l3)

(a) access matrix (b) User Keys (c) Tuple Keys (d) Tokens

Figure 3.2: Access matrix and encryption policy subsequently to the move step

t1 t2 t3

M 1 0 1

D 0 1 0

R 0 0 1

user key

M kM

D kD

R kR

tuple key

t1 k1

t2 k2

t3 kMR

source target token

lM l1 k1⊕h(kM ,l1)

lM lMR kMR⊕h(kM ,lMR)

lD l2 k2⊕h(kD ,l2)

lR lMR kMR⊕h(kR,lMR)

Figure 3.3: Access matrix and encryption policy after authentication of M for t3

�� ��
�� ��M //�� ��

�� ��MD

""❊
❊❊

❊❊
❊❊

❊

�� ��
�� ��D

==⑤⑤⑤⑤⑤⑤⑤⑤ �� ��
�� ��MDR

�� ��
�� ��R

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠

t1 t2 t3

M 1 1 1

D 1 1 0

R 1 0 0

source target token

lM lMD kMD⊕h(kM ,lMD)

lM l3 k3⊕h(kM ,l3)

lD lMD kMD⊕h(kD ,lMD)

lMD lMDR kMDR⊕h(kMD ,lMDR)

lR lMDR kMDR⊕h(kR,lMDR)

Figure 3.4: Key derivation graph and access matrix

Actually granting or revoking access to users, as illustrated in Section 2.2, may create new

nodes or delete old ones that have become obsolete. Consider again our supply chain example

depicted by Figure 3.2 and assume this time that the three tuples t1, t2, t3 belong to M. Meaning,

that three different objects left M and eventually reached D and R. Assume also that D and R were

granted access to t1, and only D can decrypt t2. As illustrated in Figure 3.4, at a later time R also

receives access to t2. As there is already a node MDR the system is not required to add any token

and just has to decrypt t2 and encrypt it with kMDR. However, now the node MD becomes obsolete.

The node no longer represents the acl of a tuple and removing it reduces tokens as it has only

one outgoing edge and more than one ingoing edge. The node is the removed (Section 2.2). If we

compute the tokens as explained above, M and R must cooperate again to compute h(kD, lMRD). To

avoid this it is necessary that the tuple owner Y agrees with each access requestor X on an initial

key kY
X which will be used by the requestor as a starting point in the derivation process. Since we

want that each database user remembers only one key we can set kY
X = h(kX , lY) where kX is the

unique private key of the requestor X .

ESCUDO-CLOUD Deliverable D3.1

4. Conclusions

This deliverable covers M4-M12 of Task 3.1 and provides a first version of the techniques for

enforcing selective access on outsourced data. In particular, the deliverable illustrates an approach

based on selective encryption, which is able to guarantee that data stored in the cloud self-enforce

access control restrictions. The solution discussed in Chapter 2 can support data owners in the

enforcement of both read and write privileges. The chapter also presents a solution that supports

updates to access privileges without requiring expensive re-encryption operations, thus limiting

the overhead for the data owner. The deliverable has also analyzed the collusion risks to which

data are possibly exposed when grant and revoke operations modify the original access control

policy. Chapter 3 specifically considered the problem of access control enforcement in the supply

chain scenario (ESCUDO-CLOUD Use Case 2). To this purpose, it describes a solution based on

RFIDs for the authentication of (authorized) players within a supply chain. It then presents how

the selective encryption approach discussed in Chapter 2 can be used to enforce access restrictions

in the supply chain scenario, when the collected data are stored in the cloud repository.

This deliverable provides the foundations for the techniques for selective access to the data

that will be developed in the project. In particular it offers building blocks and concepts for the

support of access restrictions, selective sharing requirements, and collaborative query processing

that will be investigated in WP3. The analysis and results presented in the deliverable will also

be considered for extending the tools for protection of data at rest developed within WP2 to the

support of (possibly dynamic) sharing constraints.

35

Bibliography

[ABFF09] M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamic and efficient key manage-

ment for access hierarchies. ACM Transactions on Information and System Security

(TISSEC), 12(3):18:1–18:43, January 2009.

[AT83] S. Akl and P. Taylor. Cryptographic solution to a problem of access control in a

hierarchy. ACM Transactions on Computer Systems (TOCS), 1(3):239–248, August

1983.

[BBD+08] H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz, B. Meyer,

and H. Seuschek. A milestone towards RFID products offering asymmetric authen-

tication based on elliptic curve cryptography. In Proc. of the 4th Workshop on RFID

Security (RFIDSec 2008), Budapest, Hungary, July 2008.

[BGK+07] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede. Public-

key cryptography for RFID-tags. In Proc. of 4th IEEE International Workshop on

Pervasive Computing and Communication Security (PerSec 2007), New York, USA,

March 2007.

[BJR+06] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung. Fourth-factor authenti-

cation: Somebody you know. In Proc. of the 13th ACM Conference on Computer and

Communications Security (CCS 2006), Alexandria, VA, USA, October 2006.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Journal

of Cryptology, 17(4):297–319, September 2004.

[Bly99] P. Blythe. RFID for road tolling, road-use pricing and vehicle access control. In IEE

Colloquium on RFID Technology (Ref: No. 1999/123), London, 1999.

[CE09] S.-Y. Chou and Y. Ekawati. Cost reduction of public transportation systems with infor-

mation visibility enabled by RFID technology. In Proc. of the 16th ISPE International

Conference on Concurrent Engineering (CE 2009), Taipei, Taiwan, July 2009.

[CMW06] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access con-

trol. In Proc. of 19th IEEE Computer Security Foundations Workshop (CSFW 2006),

Venice, Italy, July 2006.

[DEF+14] S. De Capitani di Vimercati, R.F. Erbacher, S. Foresti, S. Jajodia, G. Livraga, and

P. Samarati. Encryption and fragmentation for data confidentiality in the cloud. In

A. Aldini, J. Lopez, and F. Martinelli, editors, Foundations of Security Analysis and

Design VII. Springer, 2014.

36

Bibliography 37

[DFJ+07] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Over-encryption: Management of access control evolution on outsourced data. In

Proc. of the 33rd International Conference on Very Large Data Bases (VLDB 2007),

Vienna, Austria, September 2007.

[DFJ+10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Encryption policies for regulating access to outsourced data. ACM Transactions on

Database Systems (TODS), 35(2):12:1–12:46, April 2010.

[DFJ+13] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and

P. Samarati. Enforcing dynamic write privileges in data outsourcing. Computers &

Security, 39:47–63, November 2013.

[DFJL12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and G. Livraga. Enforcing

subscription-based authorization policies in cloud scenarios. In Proc. of the 26th

Annual IFIP WG 11.3 Working Conference on Data and Applications Security and

Privacy (DBSec 2012), Paris, France, July 2012.

[DFM04] A. De Santis, A.L. Ferrara, and B. Masucci. Cryptographic key assignment schemes

for any access control policy. Information Processing Letters (IPL), 92(4):199–205,

November 2004.

[DS08] B. L. Dos Santos and L. S. Smith. RFID in the supply chain. Communications of the

ACM, 51(10):127–131, October 2008.

[DVW92] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated

key exchanges. Designs, Codes and Cryptography, 2(2):107–125, June 1992.

[EPC07] EPCglobal. EPCglobal architecture framework, Version 1.2, 2007.

[Fin03] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless

Smart Cards and Identification. John Wiley & Sons, Inc., 2003.

[Fuj08] Fujitsu. Fujitsu Develops World’s First 64 KByte High-Capacity FRAM RFID Tag

for Aviation Applications, 2008.

[FWR05] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a grain of

sand. IEE Proceedings on Information Security, 152(1):13–20, October 2005.

[GA07] E. Grummt and R. Ackermann. Proof of Possession: Using RFID for large-scale au-

thorization management. In Proc. of AmI-07 Workshop, Darmstadt, Germany, Novem-

ber 2007.

[HWF08] D. Hein, J. Wolkerstorfer, and N. Felber. ECC is ready for RFID – A proof in silicon.

In Proc. of the 15th Annual Workshop on Selected Areas in Cryptography (SAC 2008),

Sackville, New Brunswick, Canada, August 2008.

[KDSB09] F. Kerschbaum, D. Dahlmeier, A. Schröpfer, and D. Biswas. On the practical impor-

tance of communication complexity for secure multi-party computation protocols. In

Proc. of the 2009 ACM Symposium on Applied Computing (SAC 2009), Honolulu, HI,

USA, March 2009.

ESCUDO-CLOUD Deliverable D3.1

38 Bibliography

[Ker08] F. Kerschbaum. Practical privacy-preserving benchmarking. In Proc. of the 23rd IFIP

International Information Security Conference (SEC 2008), Milan, Italy, September

2008.

[KOW10] F. Kerschbaum, N. Oertel, and L. Weiss Ferreira Chaves. Privacy-preserving com-

putation of benchmarks on item-level data using RFID. In Proc. of the 3rd ACM

Conference on Wireless Network Security (WiSec 2010), Hoboken, NJ, USA, March

2010.

[KS09] F. Kerschbaum and A. Sorniotti. RFID-based supply chain partner authentication and

key agreement. In Proc. of the 2nd ACM Conference on Wireless Network Security

(WiSec 2009), Zurich, Switzerland, March 2009.

[KTF08] C. Kuerschner, F. Thiesse, and E. Fleisch. An analysis of data-on-tag concepts in man-

ufacturing. In Proc. of the 3. Konferenz Mobile und Ubiquitäre Informationssysteme

(MMS 2008), Munich, Germany, February 2008.

[MSW05] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseudonym protocol

enabling ownership transfer of RFID tags. In Proc. of the 12th International Workshop

on Selected Areas in Cryptography (SAC 2005), Santa Fe, New Mexico, USA, March

2005.

[NIS09] NIST. A survey of access control models. In Privilege (Access) Management Work-

shop, 2009.

[San87] R.S. Sandhu. On some cryptographic solutions for access control in a tree hierarchy.

In Proc. of the 1987 Fall Joint Computer Conference on Exploring Technology: Today

and Tomorrow, Dallas, TX, USA, October 1987.

[San88] R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access control.

Information Processing Letters (IPL), 27(2):95–98, February 1988.

[SBE01] S.A Sarma, D. Brock, and D. W. Engels. Radio frequency identification and the

electronic product code. IEEE Micro, 21(6):50–54, November 2001.

[Son08] B. Song. RFID tag ownership transfer. In Proc. of the Workshop on RFID Security

(RFIDSec 2008), Budapest, Hungary, July 2008.

[STF05] T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC network: the potential

of RFID in anti-counterfeiting. In Proc. of the 2005 ACM Symposium on Applied

Computing (SAC 2005), Santa Fe, New Mexico, USA, March 2005.

[SWE03] S. E. Sarma, S. A. Weis, and D. W. Engels. RFID systems and security and privacy

implications. In Proc. of the 4th International Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2002), San Francisco, CA, USA, August 2003.

[vDMV09] T. van Deursen, S. Mauw, and P Vullers. Secure ownership and ownership transfer in

RFID systems. In Proc. of the 14th European Symposium on Research in Computer

Security (ESORICS 2009), Saint Malo, France, September 2009.

ESCUDO-CLOUD Deliverable D3.1

Bibliography 39

[WK08] L. Weiss Ferreira Chaves and F. Kerschbaum. Industrial privacy in RFID-based batch

recalls. In Proc. of the 1st IEEE International Workshop on Security and Privacy in

Enterprise Computing (3M4EC 2008), Munich, Germany, September 2008.

[YT05] E. Yuan and J. Tong. Attributed based access control (ABAC) for web services. In

Proc. of the IEEE International Conference on Web Services (ICWS 2005), Orlando,

FL, USA, July 2005.

ESCUDO-CLOUD Deliverable D3.1

