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Executive Summary

With the growth of cloud computing solutions, cloud customers are finding increasing opportuni-

ties to move their applications and data to the cloud. Correspondingly, an increasing number of

security issues also arise that threaten the security of the sensitive personal information of cloud

customers. While the number of cloud computing customers and services is increasing, there is

still a conspicuous gap with respect to the adoption of cloud solutions in critical contexts where

the protection of customers data is a must.

As a result, cloud services need to provide security mechanisms that help guarantee the protection

of their customer data. Security-by-design is one of the approaches that allows to embed security

from the inception of the service (from the specification of requirements to the design and the

implementation). While this provides a good way to ensure the usage of security mechanisms in

cloud services, it is still required to check that these security mechanisms actually work as planned.

Hence, security testing becomes a necessity in the service developer community and, of course, in

the cloud service provisioning community too. In the case of cloud computing, and more specif-

ically in the case of multi-cloud, it is even more challenging since the access/resources available

to check the security mechanisms of cloud providers are limited. Sometimes multi-cloud ser-

vices are composed of several CSPs (Cloud Service Providers) that belong to different companies

and implement different technologies, thus the security mechanisms implemented are different as

well. Most of the time it is not possible to actually access the CSPs to check the security mecha-

nisms implemented as they do not permit access to binaries (and of course also not to the code).

Sometimes only the interfaces are available though many CSPs do not even allow access to their

interface and we only have access at the application level (just as any other customer). As a result,

different CSPs would require different security testing techniques that also get applied at different

levels of granularity depending on the type of access/resources available (i.e., code, interfaces, or

just access to the application as normal users).

This deliverable compiles (along with presenting some developed testing support tools) the ad-

vocated security testing techniques applicable to the ESCUDO-CLOUD environment. We have

grouped and compared the testing techniques considering varied parameters that allows us to de-

termine in what aspect of the service they should be applied. We have analyzed the cloud service

life cycle and the resources needed to use those security testing techniques. We have also evaluated

how demanding these techniques are in terms of the need of resources to apply them. For example,

techniques that require the code versus techniques that require just interfaces or techniques that

can be used just at the application level. We have evaluated these techniques to analyze their ap-

plicability to the use cases identified in the WP1 of ESCUDO-CLOUD. More specifically we have

elicited the requirements reported in WP2/W2.3 to evaluate aspects such as the resources linked to

every requirement (i.e., access control platform, database, . . .), the security aspects involved (i.e.,

confidentiality) or the impact associated to the unfulfillment of that requirement.

9





1. Introduction

Collaborative multi-user cloud storage systems hold enormous potential for users, for access to

cloud-based data processing services and also to store sensitive and personal data. Naturally, this

also makes cloud storage become desirable targets for attackers. Consequently, protecting user

data stored in such systems and upholding the principles of data ownership are of high impor-

tance, especially since (a) consumer-oriented cloud storage services do not have a particularly

positive track record with regard to security [MSL+11, Laa11], and (b) the more privacy-oriented

services typically lack the collaboration functionality that is characteristic of collaborative multi-

user cloud storage systems. This, alongside the concerns about the relinquishment of control and

data ownership to a third party, have hampered the adoption of collaborative multi-user cloud

storage systems.

Alleviating such concerns is typically addressed by taking measures to avoid vulnerabilities

that threaten user privacy or data security throughout the development lifecycle, and also by com-

bining security by-design supported by continuous security testing and verification. To this end,

testing techniques are required that are capable of discovering vulnerabilities across different ab-

straction layers and in a wide variety of different security testing scenarios, including both black

and white box testing scenarios. In particular, these security testing techniques need to fulfill the

following requirements:

• They need to be suitable for assessing the security of the mechanisms facilitating secure

multi-user interactions and sharing, as developed in Task 3.2, and collaborative data pro-

cessing and queries, as developed in Task 3.3.

• They must be capable of detecting threats to the principles of data ownership. To this end,

the newly developed cryptographic layers are particularly important targets for security test-

ing - vulnerabilities in these layers threaten both overall system security and data owner-

ship in particular and vulnerabilities in key management can allow attackers to effectively

circumvent most other security mechanisms. Furthermore, securely implementing crypto-

graphic functionality is known to be highly challenging and new vulnerabilities are routinely

discovered even in relatively mature implementations of cryptographic protocols.

• They must also consider the other interfaces exposed by collaborative multi-user cloud stor-

age systems. In scenarios where such functionality is only implemented server-side, pos-

sibly by third-party service providers, thorough security testing is challenging if not im-

possible and we are severely limited in terms of the applicable security testing approaches.

However, we also consider scenarios where the desired security, privacy and data owner-

ship guarantees necessitate moving such functionality to the user side, making the problem

accessible to a wider array of security testing techniques.

• They should minimize the amount of manual effort required for effective security testing in

order to accelerate the adoption of these techniques and allow their application to large scale

11



12 Introduction

systems. To this end, efficient test generation mechanisms and automated reasoning tech-

niques that are capable of detecting potential threats with minimal manual interaction by

testers are essential. Since model-based approaches to this problem tend to suffer from scal-

ability issues, heuristic and probabilistic approaches, possibly exploiting domain-specific

information, are a more effective for large scale software systems. While such approaches

do not offer theoretical completeness, they have the advantage in terms of practical effi-

ciency.

Over the course of this document, we outline various approaches to security testing and discuss

their applicability to the different ESCUDO-CLOUD use cases. For context, Section 1.1 overviews

the interactions between this document and other ESCUDO-CLOUD work packages. The problem

statement and the used terminology are provided in Sections 1.2 and 1.2.1, respectively. The

chapter concludes with an outline of the structure of the rest of this document in Section 1.4.

1.1 Interactions with other Work Packages

The work discussed in this document is related to and interacts with the other ESCUDO-CLOUD

work packages as depicted in Figure 1.1.

Figure 1.1: Interactions of T3.4/D3.2 with other WPs of ESCUDO-CLOUD

• Work Package 1 provides the validation use cases for ESCUDO-CLOUD. The use cases

and related requirements from deliverables D1.1 and D1.2 form the basis of the security

ESCUDO-CLOUD Deliverable D3.2



Section 1.2: Problem Definition 13

needs that the techniques provided in this document are intended to address, and we discuss

the applicability of these techniques to the use cases. In turn, the techniques discussed in this

report will be applied to the use cases as part of WP1 and the results will be communicated

in D1.3, D1.4 and W1.2.

• Work Package 2 provides the design and implementation work of protection techniques for

outsourced data. The techniques and tools provided by WP2 are considered as part of the

applicability discussion in this document and as potential targets for security testing.

• Work Package 5 receives the security testing techniques discussed in this document and

their applicability to the use cases provided by WP1 for the purposes of dissemination and

exploitation.

1.2 Problem Definition

Over the course of this section, we provide an overview of the problem we are tackling with the

techniques presented in the following chapters, starting with a discussion of terminology in Sec-

tion 1.2.1. We then discuss the problem of security testing in the larger context of general software

testing in Section 1.2.2 followed by discussions of the two subcategories of functional and non-

functional security testing and an overview of software bugs that typically lead to vulnerabilities.

1.2.1 Terminology

Security is typically defined in terms of the classic CIA Triad consisting of Availability, Confiden-

tiality and Integrity. These three key terms are defined as follows [ALRL04]:

• Availability refers to the readiness of a system to provide correct service to authorized users.

• Confidentiality refers to the unauthorized disclosure of information, whether to insufficiently

privileged users or to third parties altogether.

• Integrity refers to the absence of improper or unauthorized alterations of the system.

Examples of attacks that allow an attacker to impair the availability of a target system are not

just straightforward denial of service attacks but also vulnerabilities through which, for instance,

an attacker-submitted value may cause the target system to crash. Violations of confidentiality, on

the other hand, allow an attacker to gain access to data without possessing the required authoriza-

tion. A common example are SQL injection attacks wherein attackers may gain access to database

contents that should otherwise be unavailable to them. SQL injection attacks may furthermore

result in violations of integrity if they also allow the attacker to modify rather than just obtain

database contents.

Another important security property is non-repudiation, which can be regarded as either a part

of integrity or separately on its own. In the context of security testing, the former makes more

sense: Systems that require non-repudiation as a security property typically rely on cryptographic

mechanisms to assure it. Vulnerabilities that would allow an attacker to bypass these mechanisms

would also violate the integrity of the system. Consequently, in this document, non-repudiation is

not treated as a separate property from integrity.

ESCUDO-CLOUD Deliverable D3.2



14 Introduction

1.2.2 Security Testing

In general, software testing is an essential part of the software development lifecycle, indispensable

for detecting and removing faults as early as possible. Since it is impossible to test all conceivable

preconditions, all conceivable inputs and all conceivable interactions, software testing is inher-

ently incomplete. Consequently, significant effort has been devoted to finding approaches that are

capable of prioritizing testcases and making software testing as efficient as possible. Most such

approaches deal primarily with the generation or prioritization of unit or component tests, both of

which generally fall under the category of functional testing. Most security testing, on the other

hand, is nonfunctional, more closely related to stability or reliability testing [MR05], which poses

its own unique challenges. We conclude this section by discussing how software bugs commonly

cause vulnerabilities and which kinds of bugs are particularly closely linked to security issues.

Functional Security Testing

Functional security testing is the application of functional testing mechanisms to security-related

functionality, such as, for instance, the functional testing of an authentication mechanism. This

area is generally well-covered by established techniques for functional software testing. Since

functional security testing only covers a relatively small part of the wider problem of security

testing and offers few additional challenges compared to general functional software testing, it is

not discussed in further detail in this document.

In general, most such testing deals with what is known as positive requirements - requirements

that are typically of a form similar to “if presented with a certain input, the program should behave

in a certain way or produce a certain output”. Such requirements work well for the testing of some

security mechanisms, for instance a requirement to enforce increasing waiting times following

login attempts with incorrect passwords or a requirement to disable a user account following a

certain number of failed login attempts. Such tests can easily be integrated into the normal, non-

security related testing lifecycle, although particular care should be taken when specifying test

cases for security-related functionality. Other properties that a software system must possess in

order to ensure its security, however, can not be specified as positive requirements, such as the

absence of memory corruption vulnerabilities. Testing for such properties is the bulk makes up

the bulk of security testing and is discussed in the remainder of this document.

An overview of various functional testing techniques and approaches and their applicability to

functional security testing can be found in [MR05].

Nonfunctional Security Testing

The bulk of work in the security testing area deals primarily with nonfunctional security testing,

that is, it deals with attempting to find defects in software systems that can allow an attacker to

violate security properties, even if such faults do not affect the functional correctness of the system.

Understanding the challenges associated with security testing first necessitates understanding what

kind of defects, faults and shortcomings are relevant for nonfunctional security testing.

Security Bugs

A wide variety of defects can possibly affect system security, ranging from straightforward vulner-

abilities such as buffer overflows or other memory corruption vulnerabilities to more subtle faults

ESCUDO-CLOUD Deliverable D3.2



Section 1.3: Methodology 15

that can, for instance, expose sensitive information to an attacker through minor differences in exe-

cution timing. Thus, it is not always straightforward to determine which defects have an impact on

system security or how large that impact is. Furthermore, systems may be vulnerable to attackers

due to a combination of several defects, none of which would result in a vulnerability on its own

[AAD+09]. In order to cope with these challenges, many security testing approaches focus on

specific classes of bugs that are known to cause vulnerabilities with a very high probability, such

as buffer overflows, or more generally memory corruption bugs [SPWS13]. This class of bugs

includes all bugs that allow an attacker to trigger a memory error, typically by making a pointer

go out of bounds or by causing it to be used after the memory it pointed to has been deallocated.

While numerous mitigation techniques at different stages of exploitation exist for such bugs, they

are nonetheless still common in low-level languages that do not enforce memory safety, such as

C or C++. Furthermore, since C and C++ are still frequently the languages of choice for library

development, even applications that are themselves written in languages that do provide memory

safety may be vulnerable to such bugs, depending on the libraries they use. Well-known recent

examples of vulnerabilities resulting from lack of memory safety are the Heartbleed vulnerabil-

ity [CVE14] or [CVE16], a remote code execution vulnerability in numerous Symantec products

[CVE16].

Such vulnerabilities resulting from violations of memory safety, alongside input validation

errors, are the subject of numerous proposed security testing techniques, several of which we

discuss in this report. They can be detected on either the binary or source code level and are

generally detectable without domain- or application-specific knowledge.

Other approaches focus on finding vulnerabilities at a higher abstraction level, such as application-

level vulnerabilities that are frequently caused by mismatches between the specification and the

implementation of an application. Examples of this are vulnerabilities wherein certain access con-

trol mechanisms are not implemented as specified, allowing users to access data or functionality

they should not be able to. Since formal specifications of the expected behavior of such appli-

cations are rarely available, security testing for application-level vulnerabilities makes extensive

use of heuristics and domain-specific assumptions to determine what would constitute undesirable

behavior and strongly favors efficiency over completeness.

1.3 Methodology

Testing techniques vary in utility and applicability depending on different aspects such as the

availability of artifacts including, among others, binaries, source code or level of detail of in-

terface/operational specifications. As a result we first need to classify the potential techniques

depending on their applicability. A natural reference to use is the life cycle of the cloud service

and subsequently assessing the type of tests suitable for each stage of the life cycle. Typically, 5

steps can be associated to the cloud service provisioning as:

• Specification. In this stage the requirements of the cloud service are defined. Testing tech-

niques should be able to trace that all the defined requirements are implemented and fulfilled.

• Design. In this stage the software components that are part of the cloud service and their

interfaces are identified.

• Coding. In this stage the components identified in the design are implemented and inte-

grated.

ESCUDO-CLOUD Deliverable D3.2



16 Introduction

• Verification. In this stage the components are integrated and operational. The tests should

be able to check if the system is working according to the requirements defined in the spec-

ification stage.

• Operation and Maintenance. In this stage the service is running and in use by the cus-

tomers. The testing techniques should be able to check that the service is conforming to

specifications and free of vulnerabilities that might affect the specified operations. For

some testing techniques, information about customers’ interaction with the cloud service

and execution logs and traces may also be used.

Figure 1.2: Life cycle for the provisioning of cloud services and the elements required for testing

The definition of the security testing techniques (Chapter 2) is developed according to the

above described classification. This allows to identify the suitable security testing techniques

for each stage of the life cycle in order to further evaluate the system requirements (defined in

WP2) for every use case (defined in WP1) and the security testing techniques to apply for each

requirement.

1.4 Outline

The remainder of this document is structured as follows. Chapter 2 provides a classification and

overview of existing security testing techniques, guidelines and methodologies. Chapter 3 outlines

some of the available techniques for ensuring the integrity of applications over their development

and use. We discuss the applicability of these techniques to the various use cases in Chapter 4.

Finally, Chapter 5 presents some summary observations.
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2. Security Testing Techniques

The deployment of security and privacy mechanisms is essential in scenarios and applications in-

volving the management of personal data. It is even more important for scenarios in which third

parties might have access to personal data, such as SaaS deployments utilizing third party infras-

tructure or multi-cloud scenarios involving multiple third parties. To this end, it is paramount

to use techniques that aim to protect the fulfillment of the security and privacy requirements ex-

pected by users. Techniques such as security-by-design are a good starting point to ensure that

security and privacy mechanisms are integrated in cloud services at design and implementation

time. However, the current changing context of threats and growing vulnerabilities forces to de-

sign techniques to verify the expected security and privacy levels. This is typically done in two

possible ways:

• Component level techniques, which are capable of operating on individual software com-

ponents irrespective of whether or not these components directly expose outside interfaces

and are therefore applicable to internal components of the cloud service.

• Application level techniques which externally verify the cloud service, either using inter-

faces or application interaction.

Cloud services, and especially those cloud services that combine more than one cloud (multi-

cloud), are highly modular. Therefore, security testing techniques that are focused on common

interfaces and work at the application level are desirable in such scenarios. However, as will

be described later in this section, there are component level software security testing techniques

which are equally applicable to certain parts of multi-cloud services. While certain techniques

are mainly applicable to elements that are under the control of the entity performing the security

testing (i.e., white box testing as referred in Section 2.1), other techniques need to be capable of

operating with limited information since they have to be applied to elements that are not directly

available or only available in binary form (such as elements provided by third parties or user-

end components). This Task 3.4 studies the support of security testing techniques applicable to

interfaces offered by collaborative multi-user cloud storage systems. To this end, special attention

is paid to the security testing techniques applicable to user-end components.

In this section, we discuss numerous different techniques that have been proposed for secu-

rity testing, starting with so-called White Box approaches in Section 2.1. These approaches are

characterized by their requirement for source code access and can enable thorough and efficient

security testing. In scenarios where such source code access is not available, security testers may

need to fall back to what are known as Black Box approaches, discussed in Section 2.2. While

these approaches do not require source code access and are therefore more widely applicable, they

generally do not perform quite as well. Next, model-based security testing approaches are briefly

discussed in Section 2.3. Penetration testing is covered in Section 2.4, followed by a discussion of
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various vulnerability assessment approaches and tools in Section 2.5. Throughout this entire sec-

tion, we discuss efficiency concerns as they relate to different security testing techniques. Next, we

adress how to overcome these issues: We discuss the applicability of test parallelization to security

testing and some of the issues that must be considered in this context in Section 2.6 based on expe-

riences with test parallelization in dependability assessment. We conclude this section by giving a

brief overview of widely used security testing guidelines and methodologies in Section 2.7.

2.1 White Box Approaches

White box testing describes all testing approaches that utilize knowledge of the internal workings

of the component that is being tested. In practice, this typically means source code access is

required. For the purposes of security testing, this can result in increased efficiency and allow for

the application of static analysis and symbolic execution to guide test case generation in order to

maximize coverage and discover a wide variety of vulnerabilities.

Over the course of this section, we first briefly discuss the benefits of static analysis techniques

for finding potential vulnerabilities early and cheaply before moving on to guided security testing

techniques that utilize approaches such as symbolic execution to leverage knowledge of program

internals for better test case generation. We also briefly address the efficiency concerns that go

along with the use of such approaches.

2.1.1 Static Analysis

Static analysis techniques operating on the source code level allow for cheap and easy detection of

problems that could result in vulnerabilities like those discussed in Section 1.2.2, such as possible

buffer overflows, usage of uninitialized variables or insecure usage of certain APIs. Consequently,

tools implementing such techniques exist for a wide variety of languages and have achieved sig-

nificant adoption by software developers. Widely known examples include clang-analyzer1 for C,

C++ and Objective-C and FindBugs2 for Java. While these static checkers are primarily used to

warn developers about code that is likely to be buggy or considered bad practice, they also con-

tain checkers for certain kinds of security issues, such as the aforementioned insecure API usage

(for instance, using gets in C code or insecure usage of SQL-related APIs in Java that can lead to

SQL injection vulnerabilities). Security-specific checkers3 have also been developed but are not as

widely used. Additionally, commercial checking systems and static security testing tools are also

available, offering a variety of proprietary analyses of varying complexity. Due to the low man-

ual effort required and the potential to discover potential vulnerabilities early during development

when they are typically relatively straightfoward to fix, the use of static analysis tools throughout

development is a valuable part of building secure software.

A brief example snippet of C code can be seen in Listing 2.1. The code in question shows

a function that uses the value of an integer parameter as part of a call to malloc. If foo fails to

perform the appropriate bounds checking, the multiplication may overflow, in which case malloc

would return a significantly smaller buffer than expected. This, in turn, may lead to out of bounds

memory accesses with the corresponding security implications. Potential problems like these are

trivial to detect using static analysis tools (clang-analyzer is capable of detecting the example

1http://clang-analyzer.llvm.org
2http://findbugs.sourceforge.net/
3https://find-sec-bugs.github.io/
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from Listing 2.1) during development, allowing developers to fix such issues before they become

exploitable vulnerabilities.

Listing 2.1: C code containing potentially unsafe use of malloc.

void foo ( i n t b u f l e n ) {

. . .

i n t ∗p = mal loc ( b u f l e n ∗ s i z e o f ( i n t ) ) ;

. . .

}

Modern static checkers are powerful but also enormously complex pieces of software and as

such, usually tightly coupled to just one or a handful of programming languages. Recent research

suggests that some of this complexity may be superfluous and proposes a simpler, significantly

more portable approach to writing static checking systems which can be easily ported to different

programming languages or extended to support new checks [BNE16]. Another recent approach

suggests tackling the challenges associated with complex checking systems by leveraging machine

learning techniques to automatically generate models of vulnerability types which can then be used

as static analysis tools [MNC16]. Nonetheless, many of the underlying checks can themselves be

fairly complex to develop and execute, and efficiency remains a concern as applying complex

static analyses to large code bases may take a prohibitively long time.

Beyond the source code based tools discussed above, other forms of static analysis operate

on higher levels of abstraction, sometimes in combination with dynamic analyses, as in Waler

[FCKV10]. Such tools target what is known as application level or logic vulnerabilities, a category

that is discussed in more detail later on.

2.1.2 Instrumentation-guided Testing

Instrumentation-guided testing, in the context of security testing usually instrumentation-guided

fuzzing, described a set of approaches that stem from attempts to improve the efficiency of black

box random testing (or fuzzing, discussed in Section 2.2) without utilizing techniques like static

analysis or symbolic execution, which tend to suffer from performance and scalability problems

when applied to entire large-scale software systems rather than individual components or com-

pilation units. To this end, such approaches typically perform light weight compile time instru-

mentation of the target program, use that instrumentation to gather coverage information at run

time and then use that information for test case generation or prioritization. A schematic overview

of the structure of instrumentation-guided security testing techniques can be seen in Figure 2.1.

Note that, while the schematic overview presents the generation of an instrumented version of the

source code or an intermediate representation and the subsequent compilation to an instrumented

binary as two separate steps, in practice these steps are typically closely linked as instrumentation

is commonly implemented as a compiler pass.

The most well known tool in this area is AFL [Zal], essentially a fuzzing tool and discussed in

more detail in Section 2.2. This and related or derived tools essentially constitute the state of the

art in random testing for security. As they are generally capable of operating on binaries (using

mechanisms discussed in Section 2.2), albeit possibly with reduced performance or efficiency,

when source code is not available, we consider them to be grey box rather than strictly white box

testing techniques and do not discuss them in greater detail here.
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Figure 2.1: A schematic overview of instrumentation-guided testing

The focus on performance that has driven the development of some of these tools and tech-

niques stems from the recognition that security testing in general requires significant amounts of

time and computational resources and is, due to this cost, not as frequently applied as it ought to be

in practice. As modern systems increasingly rely on parallelization to achieve better performance,

security testing must also be parallelized efficiently to remain applicable, but such parallelization

is not always straightforward and testers may encounter pitfalls resulting from test interference

affecting result accuracy [WSN+15]. This is particularly relevant for those security testing ap-

proaches that need to perform hang detection, and we discuss this problem in greater detail in

Section 2.6.

2.1.3 Symbolic Execution

Symbolic execution is a program analysis technique in which the target program is executed by

an interpreter which treats inputs as symbolic values (in contrast to the concrete values obtained

during an actual execution). The symbolic execution engine gathers the constraints on the sym-

bolic values on each path of the program, determining which inputs would trigger the execution of

that path. Due to the path explosion problem, symbolic execution generally does not scale well to

large software systems, but numerous approaches have been proposed to tackle this problem, for

instance by limiting the usage of symbolic execution to certain components or using heuristics to

choose certain paths.

In the context of security testing, symbolic execution has been combined with fuzzing (usually

a form of black or grey box random testing, discussed in more detail in Section 2.2) in an approach

known as white box fuzzing [GLM08]. In white box fuzzing, the target program is first executed

non-symbolically with a valid input. The trace from that execution is used to gather constraints on

the program input. New inputs are generated by negating individual constraints, and the process

is repeated. While this approach is capable of quickly discovering numerous new paths, it suffers

from a similar problem as black box fuzzing when dealing with applications with highly structured

ESCUDO-CLOUD Deliverable D3.2



Section 2.1: White Box Approaches 21

inputs, such as compilers: The technique discovers many paths through the early stages of input

parsing but is not capable of reaching deeper into the program. As in black box fuzzing, one solu-

tion to this problem relies on the use of input grammars, as suggested in [GKL08]: Constraints can

be formulated in terms of symbolic input grammar tokens rather than individual bytes, allowing

the application of white box fuzzing to complex applications with highly structured input formats.

Security testing techniques based on symbolic execution have also been proposed for specifi-

cally targeting certain kinds of vulnerabilities, such as buffer or integer overflows.

For buffer overflows, Dowser [HSNB13] is a guided fuzzer that utilizes symbolic execution

and taint tracking (discussed in Section 2.2) in order to discover buffer overflow or underflow

vulnerabilities. To this end, the analysis specifically targets locations in the code where array

accesses are performed inside a loop, uses taint tracking to determine which parts of the input

influence the array indices and then uses symbolic execution to check if there are any values these

parts of the input can take that cause a buffer over- or underflow. Figure 2.24 illustrates this

process for a small example function foo, which contains three array accesses inside loops (with

x, y and z being loop variables). The approach first detects these accesses using static analysis

and then, in the second step, ranks them based on their estimated complexity. Then, in the third

step, dynamic taint analysis (see Section 2.2.2) is utilized to determine which parts (i.e., which

bytes) of which input affect the pointer that is used in the chosen array access. The identified input

parts are then treated as symbolic in the fourth step, and symbolic execution is utilized to exercise

the loop containing the chosen array access. Finally, a buffer overflow detection mechanism is

used in the final step to detect any buffer overflow that may have been triggered. Dowser is an

example of an approach that combines several different techniques relevant to security testing,

including symbolic execution and dynamic taint analysis, and attempts to limit the application

of symbolic execution to a small part of the input variables and the target program in order to

mitigate the efficiency concerns that limit the application of symbolic execution to large scale

software systems. These characteristics are shared by many security testing techniques that utilize

symbolic execution as testing efficiency is a key concern in this area.

Figure 2.2: High level overview of buffer overflow detection with Dowser

For integer overflow vulnerabilities, DIODE [SDLR+15] identifies target locations and values

(such as a call to malloc and the corresponding size argument) and uses symbolic execution to

determine a symbolic expression for the target value as a function of the program input. This is

then used to determine whether there are inputs that both execute the target location and trigger

an over- or underflow in the target value. Here, the indentification of specific target locations and

values prior to symbolic execution is used to limit the amount of computational effort required to

perform the symbolic execution.

The approaches discussed above differ in that some require full source code access while oth-

4Illustration based on figure in [HSNB13].
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ers are capable of operating on binaries. In general, much of the recent work on symbolic execution

builds on KLEE [CDE08], a symbolic execution engine that operates on LLVM intermediate rep-

resentation. Since lifting binaries to LLVM IR is challenging, such tools generally work best if

they have full source code access.

Efficiency and scalability remain concerns with security testing approaches based on symbolic

execution. The path explosion problem frequently renders such approaches impractical for larger

applications, and while tools that specifically target certain vulnerability classes can improve effi-

ciency, they clearly do not represent a general solution for security testing since a large number of

them would be needed to cover even the most common vulnerability types.

Another approach for tackling the path explosion problem is the highly selective application

of symbolic execution only as a fallback under specific circumstances. Such a technique has

been proposed as part of Driller [SGS+16], which selectively uses symbolic execution to generate

new inputs when it encounters conditions that the fuzzing engine is incapable of satisfying. As

symbolic execution does not scale well to large software systems, approaches based on selective

application of the technique are highly beneficial in testing such systems.

2.1.4 Applicability

Table 2.1 summarizes the characteristics of the security testing techniques described in this section

and their applicability in the context of modern cloud-based software systems.

Table 2.1: Summary of white box security testing techniques for cloud-based software systems

Stage of Life Cycle Artifacts required Level of practical

adoption

Available tools

Static analysis Coding or later Source code or bi-

naries (binary/grey

box approaches re-

duce efficiency)

High clang-analyzer,

FindBugs, may

others including

several security-

specific checkers

available.

Instrumentation

guided testing

Coding or later Source code or bi-

naries (binary/grey

box approaches re-

duce efficiency)

Medium AFL, numerous

fuzzers.

Symbolic execu-

tion

Coding or later Source code (some

binary tools exist)

Low Driller, several

KLEE-based tools.

2.2 Black Box Approaches

Black box security testing techniques are all those approaches which do not depend on knowledge

of the internal structure or workings of the target system or component. Instead, such security

testing focuses on interfaces between the target component or system and other components or

systems. The most well known black box security testing technique is classical black box fuzzing,

the discussion of which makes up the bulk of this section, including a brief overview of some

widely used fuzzing tools. We also discuss approaches to move from black box to grey box

testing by recovering partial information about a target component or systems internal workings

and structure from binary code in situations where source code access is not available to testers.
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2.2.1 Fuzzing

Fuzzing is a form of black box random testing. The term was first used by Miller et al. in 1990

[MFS90] in reference to an approach for assessing the reliability of UNIX utility programs. De-

spite the technique’s origins as a dependability testing approach, fuzzing has proven to be an

immensely useful and powerful tool for security testing and plays a key role in the large scale,

automated security testing of widely deployed software today. We start this section with a brief

description of fuzzing in general and an overview of the different categories fuzzing-based ap-

proaches to security testing can be classified into before discussing the categories of mutation-

based and generation-based fuzzing in more detail. For each category, we give an overview of

the category and highlight techniques and recent developments that are particulary relevant to

cloud-based software systems in general and the ESCUDO-CLOUD project in particular.

As mentioned above, although similar techniques were known previously, the term fuzzing or

fuzz testing itself was first used by Miller et al. [MFS90] for a technique for finding reliability

issues with UNIX utility programs by feeding them random input data. Their experiments were

originally motivated by the observation that corrupted inputs resulting from line noise would fre-

quently cause UNIX utility programs to crash when working remotely. Fuzzing, then, is originally

a technique for finding dependability issues, not strictly security testing. Its relevance to security

testing stems from the fact that a bug that causes a program to crash on random input must be con-

sidered a vulnerability affecting availability when that input is untrusted. Furthermore, the kinds

of bugs underlying such crashes are frequently memory safety violations and therefore likely to be

exploitable, a fact that was already noted in [MFS90], which listed the use of fuzzing for security

testing as potential future work.

Research on fuzz testing generally deals with finding effective strategies for input data gen-

eration, test case prioritization and the application of fuzzing to avenues of program “input” that

were not previously considered, such as configuration files (e.g. [DMK10]).

For input data generation, fuzz testing approaches can be broadly classified as either generation-

based or mutation-based (or mutational) [MP07]. As the names imply, the former group of ap-

proaches generates input data from scratch, typically based on some knowledge about the struc-

ture or format of the input of the target program, whereas the latter approach works by corrupting

or mutating known valid inputs according to some strategy, usually either random, heuristic or

instrumentation-guided. The advantages and drawbacks of either category are discussed in more

detail in the following and relevant examples of each are provided. We conclude this chapter with

a brief overview of fuzzing-based security testing in practice and discuss some relevant projects.

Generation-Based Fuzzing

Generation-based fuzz testing approaches generate input data from scratch based on knowledge

about the format or structure of the input that the target program expects. The reasoning behind

this approach is based on the observation that fuzzing with purely random input data suffers from

significant efficiency limitations, particulary for programs that operate on highly structured in-

put, such as programming language interpreters or image processing libraries. In such programs,

purely random input is usually quickly discarded by the parsing stage as invalid and the code that

actually processes valid or nearly valid inputs is never executed, making it impossible to detect

security vulnerabilities in large parts of the target program. Ideally, generation-based fuzzing can

avoid these issues and exploit input format knowledge to cover a larger fraction of the target pro-

gram than purely random or mutation-based fuzzing (which relies heavily on the quality of the
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initial seed inputs, as discussed later on).

Exploiting knowledge about the input data format or structure naturally requires that knowl-

edge to be incorporated in the fuzzing tool in some manner. This can be either done manually, as

part of the creation of a generation-based fuzzer, or automatically based on a formal specification

of the input format if such is available. This represents additional effort that is not required in

purely random or mutational fuzz testing.

There are a number of generation-based fuzzers and fuzzing frameworks available that facil-

itate the generation of fuzzing inputs based on specific rules, templates or grammars, such as the

SPIKE fuzzer creation kit [Ait02]. Examples of generation-based fuzzers that are tied to spe-

cific input formats are jsfunfuzz [Rud07], a fuzzer that was specifically designed for testing the

JavaScript engine in Mozilla Firefox, and CSmith [YCER11], a tool capable of generating ran-

dom but standard-conforming C programs for compiler testing. Interpreters and compilers are a

common target for generation-based fuzzing due to their typically well-specified input format and

their high complexity, which renders them particularly bug-prone.

A further refinement to the grammar-based input generation technique has been proposed in

[HHZ12]. Here, instead of using a grammar specification to generate program inputs, the authors

propose using the grammar to derive a parser, identifying fragments (effectively examples for

non-terminals in the input grammar) in a set of sample inputs and using this semantic knowledge

to more effectively mutate inputs to generate new test cases. Just as much of the recent work on

security testing is moving away from a strict separation of black and white box techniques towards

grey box techniques, this example illustrates that research on fuzzing is moving towards finding

effective ways to combine generation-based and mutation-based techniques in order to maximize

fuzzing efficiency and usability.

Mutation-Based Fuzzing

In contrast to the generation-based fuzzing techniques discussed above, mutation-based fuzzing

does not create inputs from scratch or require any protocol- or application-specific knowledge re-

garding input formats. Instead, approaches in this class generally start from a set of valid program

inputs, that is, inputs that follow the format or protocol expected by the target program, and mu-

tate them in order to generate new test inputs. The mutations themselves can be purely random

or heuristic in nature or, in what is known as feedback-driven fuzzing, rely on information about

the program execution produced by previous inputs to generate promising mutants. Furthermore,

mutation operators can be generic and therefore suitable for and capable of operating on any input

format, or specific to a certain input format, exploiting semantic knowledge of that format to in-

crease mutation effectiveness. The latter category overlaps to some extent with the grammar-based

input generation approaches discussed above, using knowledge of input grammars not to generate

new inputs but to generate mutations that remain conformant with a given grammar.

Mutation-based fuzzing works by applying some form of mutation operator to a valid seed

input in order to generate new inputs for the target system. The most straightforward form of

this is simply flipping random bits in the seed input, but a wide variety of mutation operators

of varying complexity have been proposed, ranging from the aforementioned random bit flips or

simple arithmetic operations to input grammar aware mutation operators such as those proposed

in [HHZ12]. Besides more advanced mutation operators, research on mutation-based fuzzing also

deals with mutation strategies [RM11], fuzz scheduling [WCGB13, CWB15] and seed selection

[RCA+14] for the maximization of fuzzing efficiency.
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A mathematical model for the formalization of mutation-based fuzzing has been proposed in

[CWB15], as part of an approach for choosing a mutation ratio that maximizes the probability of

finding bugs. Test cases are modeled as inputs in the form of fixed-length binary sequences and

execution traces are used to determine dependencies between different input bits, which amounts

to a rough approximation of the syntatic structure of the input format. On this basis, the mutation

ratio for a given program and seed input can be optimized to increase fuzzing efficiency.

Recent work has also dealt with mutation-based fuzzing for specific input formats, such as

[JNB16], wherein the authors propose mutation operators specifically for XML inputs in order

to generate inputs that are both valid and malicious as such inputs are both harder to detect than

randomly mutated ones and more likely to trigger vulnerabilities in the target system.

Alongside work on guided mutational fuzzing using instrumentation and tools that attempt

to utilize symbolic execution to discover new paths, this recent work on formalization and input

format-specific mutation operators is indicative of a focus in fuzzing research on overcoming the

efficiency limitations of blind mutational fuzzing by incorporating more information regarding the

structure of the target program and its input format. As discussed above, such developments also

exemplify the move towards grey box techniques in general.

Fuzzing In Practice

Fuzzing is widely applied in practice as an efficient means of vulnerability detection that requires

comparatively little manual intervention. Consequently, a wide variety of fuzzing tools have been

developed. They are aimed at different usage scenarios, implement different strategies and vary

in their maturity, efficiency and ease of use. Guided fuzzers in particular are rarely generic but

rather more commonly aimed at specific usage scenarios due to the need to observe the execution

behavior of the target system. The most widely used fuzzing tools are

• CERT Basic Fuzzing Framework (BFF) [CERa]. BFF implements mutational fuzzing on

file input for software that runs on the Linux and OSX operating systems. Using the zzuf

fuzzer [Hoc] internally, BFF is intended to achieve ease of use and minimal manual interven-

tion. As such, it includes tooling to minimize the amount of supervision a fuzzing campaign

requires, can automatically perform test case minimization and crashing test case dedupli-

cation and supports the use of machine learning techniques for increasing the efficiency of

fuzz scheduling and input file selection.

• FOE, the CERT Failure Observation Engine [CERb]. FOE is a mutation-based fuzzer for

file input targeting applications for Windows systems, which shares many of the internals

and features of BFF. CERT maintains lists of public vulnerabilities that were found with

BFF5 and FOE6.

• AFL [Zal]. AFL is not a blind fuzzer but rather relies on compile time instrumentation and

genetic algorithms to generate and prioritize new input variations. While the reliance on

instrumentation for coverage information renders AFL a white or grey box approach rather

than a strictly black box one, it also allows the fuzzer to synthesize fairly complex input

formats without requiring explicit information about the input format such as a grammar

specification. This allows AFL to, for instance, generate valid JPEG files essentially from

5https://vuls.cert.org/confluence/display/tools/Public+Vulnerabilities+Discovered+Using+BFF
6https://vuls.cert.org/confluence/display/tools/Public+Vulnerabilities+Discovered+Using+FOE
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scratch7. AFL also supports test case minimization and the synthesis of test case corpora

designed to maximize coverage. As the tool requires next to no manual intervention or

configuration, it has been widely applied to numerous programs and has proved itself ca-

pable of discovering a significant number of vulnerabilities. AFL is generally designed for

the fuzzing of user-mode programs and targets file inputs. Attempts to implement similar

coverage-guided fuzzing approaches have been made in order to target lower level code,

such as Linux kernel code [Gro, Goo]. Such alternative implementations or extensions

highlight the applicability of coverage-guided fuzzing to a wide variety of usage scenarios.

Despite the recent increase in the popularity of fuzzing for security testing in general and AFL-

style tools specifically and the accompanying advances in these tools, efficiency remains a major

concern as it does in all forms of security testing. The extent and efficiency of the parallelization

support offered by fuzzing tools varies, and, while correct test parallelization is not straightforward

(as we discuss in Section 2.6), such issues are largely left unaddressed in practice.

2.2.2 Binary Analysis and Instrumentation

While testers in black box settings by definition do not have access to the source code of the target

program, in practice binaries may be available and can be used to reconstruct information about

the internal workings or structure of the target application. Such scenarios do not fall under a strict

definition of black box testing but, due to the incomplete nature of the information that is generally

recoverable from binaries, can not be considered as conventional white box testing either. Instead,

they most closely resemble grey box testing.

Researchers have dedicated significant effort to attempts to obtain the information required to

apply various white box testing techniques from the target binaries in such scenarios. The result-

ing techniques include attempts to apply instrumentation-guided fuzzing to binaries by utilizing

Dynamic Binary Instrumentation, advanced binary analysis frameworks and techniques such as

Dynamic Taint Analysis. In this section, we first discuss the use of Dynamic Binary Analysis for

security testing before moving on to Dynamic Taint Analysis.

Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) is a technique that, through the injection of instrumenta-

tion code, allows the fine-grained observation and analysis of the runtime behavior of an applica-

tion. Crucially, the instrumentation is transparent to the target application and performed on the

binary level – source code need not be available. Typical uses of DBI include runtime profiling,

optimization tools and runtime memory safety checkers.

In order to facilitate portable analyses of such instrumented binary applications on different

platforms and architectures, some DBI frameworks also lift the binary code from the target ap-

plication to an intermediate representation not unlike those used by compilers. The most notable

example of this approach is Valgrind [NS03], a widely used tool for dynamic binary analysis.

This step of runtime lifting to a form resembling a compiler IR allows applying techniques

that would usually be applied at compile time to application that are only available to the tester

in binary form. Security testers can then apply techniques that require compile time instrumenta-

tion, such as AFL-style guided fuzzing to application without having access to the source code –

7https://lcamtuf.blogspot.de/2014/11/pulling-jpegs-out-of-thin-air.html
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essentially using white box techniques in a black box setting. AFL itself includes support for an

experimental binary-only mode using the QEMU [Bel05] user-mode emulation functionality.

Notably, the usefulness of the intermediate representations used in DBI tools and frameworks

is not restricted to runtime instrumentation and analysis. For instance, parts of the Valgrind project

have been used in binary analysis and symbolic execution tools in order to facilitate portability

across architectures and platforms [SWS+16].

As DBI tools and frameworks continue to improve and the gap between working on lifted and

compile-time IR continues to shrink, the availability and efficiency of security testing and analysis

techniques accessible to testers in binary-only scenarios continues to improve.

Dynamic Taint Analysis

Dynamic Taint Analysis (DTA) is a technique for assessing at runtime which computations are

affected by (tainted) previously specified sources, such as user input. Untrusted input is treated as

tainted, and that taint is then spread to other values that are computed from tainted sources. DTA

is widely used in the context of security testing and can be used to assess, for instance, whether

input from an untrusted source is executed or used to compute memory addresses that are then

accessed (with the latter indicating a potential memory safety issue).

DTA has been used to augment fuzzing techniques [GLR09, BBGM12], sometimes in combi-

nation with symbolic execution [WWGZ11] in order to increase fuzzing efficiency and coverage.

By incorporating taint analysis, fuzzing approaches can determine which parts of the input are

particularly promising targets for mutation, and, when used in conjunction with branch instrumen-

tation, which parts of the input need to be mutated to affect certain branching decisions in order to

discover new paths. This way, an increase in fuzzing coverage can be achieved without having to

make use of more expensive (in terms of run time overhead) techniques, such as symbolic execu-

tion, and potential vulnerabilities can be detected during fuzzing even if they do not directly lead

to an observable crash or memory safety violation.

2.2.3 Applicability

Table 2.2 summarizes the characteristics of the security testing approaches and related techniques

described in this section and their applicability in the cloud context.

2.3 Model-based Security Testing

Model-based security testing utilizes, as the name implies, models to assess whether a software

system possesses the security properties it is expected to. It is related to and derives from classi-

cal model-based testing, wherein explicit models of a target system and or the environment it is

expected to operate in are used to algorithmically derive test cases for the target system. As with

most software testing approaches, most classical model-based testing techniques focus primariliy

on functional testing and are therefore not directly applicable to security testing. An overview and

classification of general model-based testing techniques can be found in [UPL12].

What sets model-based security testing techniques apart from general model-based testing,

apart from the focus on non-functional properties, are not primarily the test generation techniques

and algorithms themselves but rather the incorporation of and focus on security properties in both
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Table 2.2: Summary of black box security testing approaches and related techniques for the cloud

Stage of Life Cycle Artifacts required Level of practical

adoption

Available tools

Generation-Based

Fuzzing

Coding or later Binaries Medium SPIKE, jsfunfuzz,

several others.

Mutation-Based

Fuzzing

Coding or later Binaries High AFL, AFLFast,

zzuf, many others.

Adaptations for

specific usage sce-

narios are common

(e.g. TriforceAFL,

syzkaller).

Dynamic Binary

Instrumentation

Coding or later Binaries High Many Valgrind-

or DynamoRIO-

based tools, e.g.

memcheck.

Dynamic Taint

Analysis

Coding or later Binaries Low Mainly non-public

research prototypes

(e.g. TaintCheck).

the model of the target system and the model of its environment. Felderer et al. classify model-

based security testing techniques according to the system security model, the environment secu-

rity model and the proposed test selection criteria [FZB+16], as well as providing an extensive

overview of relevant research in the area of model-based security testing. In this classification,

system security models can be either models of security properties (as in the aforementioned CIA

triad), models of vulnerabilities (roughly comparable to fault models in dependability and robust-

ness testing) or conventional models of functional security mechanisms. Environment security

models can be either threat models or attack models.

Schieferdecker et al. [SGS12] distinguish between three different categories of models that

are of relevance for model based security testing:

1. Architectural and functional models, which model the general behavior of the target system

and are useful for functional security testing or for the analysis of interaction and protocol

models that relate to security-critical interfaces.

2. Threat, fault and risk models, which model the causes and consequences of potential devi-

ations from the desired behavior of the target system in the form of, as the name implies,

threats, faults and risks. The attack trees [Sch99] we briefly discuss in Section 2.4 fall into

this category.

3. Weakness and vulnerability models, which model flaws in the target system directly, for

instance by applying techniques related to mutation testing to models of the target system

[WAW09].

Over the remainder, we will first expand on some specific model-based security testing tech-

niques that exhibit particular relevance to the ESCUDO-CLOUD project, before subsequently

moving on to discussing the concerns regarding the practical applicability and scalability of model-

based security testing approaches that have hampered the practical adoption of such techniques.
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2.3.1 Model-based Security Testing Techniques

In this section, we highlight some model-based approaches to security testing that are of particular

practical relevance or apply particularly well to the problems faced in the context of the ESCUDO-

CLOUD use cases.

• Model-based testing for cloud environments. Cloud and multi-cloud settings, as used in

this project, impose new challenges on security testing in general and model-based secu-

rity testing in particular due to the variability and openness of the cloud environment. A

technique for the model-based security testing of cloud computing environments has been

proposed by Zech [Zec11]. The proposed technique first utilizes a model of the cloud system

and its elements along with a repository of known vulnerabilities to perform a risk analysis,

resulting in a risk model. This risk model forms the basis on which negative security re-

quirements are derived, which then in turn are used to generate misuse cases. These misuse

cases can then be used to generate executable test cases.

• Model-based testing for cryptographic components. Botella et al. [BBC+13] present a

technique for the model-based security testing of cryptographic components. In the pro-

posed approach, a security test engineer incrementally generates a test generation model

from the component specifications and derives test purposes from the specified security

testing objectives. The two formal artifacts resulting from this first step (test purposes and

test generation model, modeled in a test selection language and UML/OCL, respectively)

can then be used to drive an automated test generation process. The proposed approach

is applicable to both software and hardware cryptographic modules and can support both

functional and non-functional security testing.

• Model based testing for security protocols. Dadeau et al. [DHK11] present a model-based

security testing technique for implementations of security protocols that utilizes High-Level

Security Protocol Language (HLSPL) models. The proposed technique is essentially a form

of mutation testing, whereby specifically defined mutation operators are applied to HLSPL

models to introduce flaws in the modeled security protocol. Traces of attacks on the mutated

HLSPL models can then be used to derive security test cases for an implementation of the

protocol.

2.3.2 Practical Concerns

While model-based security testing is a promising research direction for assuring the security of

modern cloud systems, there are several practical concerns that remain hinderances to its wider

adoption. In particular, these are the requirements of an explicit, typically manually specified

model for the system and its environment along with the corresponding cost of creating these

models as well as scalability concerns. The latter in particular renders the application of such

techniques to the kind of large scale cloud systems that are considered in the context of this project

challenging as model-based techniques frequently do not scale to such systems. Moreover, the

necessary models of the operational environment are usually missing and would require significant

manual effort to create, effort that would potentially need to be (at least partially) repeated when

the operational environment and its components change, which is a frequent occurence in cloud

and multi-cloud settings due to the inherent flexibility of such settings.
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Consequently, model-based security testing is applicable primarily to smaller subcomponents,

although the requirement for an explicit model of the target system may frequently prove to be a

hinderance even for such components: The effort and expertise required to manually create the re-

quired models is significant and may be better spent on security testing approaches that require less

manual effort (such as fuzzing-based approaches, see Section 2.2.1) or puts the required security

testing expertise to use more directly (such as penetration testing, see Section 2.4).

Finally, the effort required for and challenge associated with maintaining useful models of the

flexible, frequently changing operational environment of modern, large scale, cloud-based appli-

cations underlines the importance of focusing security testing on well defined interfaces between

the target component and its environment.

2.3.3 Applicability

Table 2.3 summarizes the characteristics of the model-based security testing techniques described

in this section and their applicability in the cloud context.

Table 2.3: Summary of model-based security testing techniques

Stage of Life Cycle Artifacts required Level of practical

adoption

Available tools

Model-based test-

ing for cloud envi-

ronments

Specification or

later

Model Low Process framework,

no tools are pub-

lically available

but academic pro-

totypes exist for

individual steps.

Model-based

testing for cryp-

tographic compo-

nents

Specification or

later

Model Low Partially manual

process, individual

steps may be sup-

ported by general

(i.e., not specific

to security testing)

model based testing

tools.

Model based test-

ing for security

protocols

Specification or

later

Model Low AVISPA [ABB+05]

2.4 Penetration Testing

In the broadest possible sense, penetration testing is any form of security testing wherein the tester

essentially attempts to break into a system in the same manner a potential attacker might. The

concept of penetration testing is not limited to software security testing (as in the previous testing

approaches)8 and can also be applied at, for instance, the organisational level to test adherence

to security procedures. Penetration tests can be classified according to the amount of information

about the target system the tester has access to in advance of and during the penetration test,

8For example, black box testing primarily addresses automated software testing whereas penetration testing often

covers manual aspects that can target more than software (e.g., organizational aspects). Hence, according to the amount

of information about the target system, the penetration tests are classified as either black box or white box penetration

tests.
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ranging from fully informed penetration tests which essentially correspond to white box testing to

uninformed penetration tests which correspond to black box testing. Due to the higher efficiency,

the former approach is more common.

Over the course of this section, we first cover white box or informed penetration testing ap-

proaches, followed by black box or uninformed approaches before concluding by briefly covering

penetration test automation. Note that, unlike the other approaches described and discussed here,

penetration testing is not generally an automatable form of software testing (although automated

security and vulnerability assessment tools, which we discuss in Section 2.5 commonly play a key

role). Rather, it is an activity that commonly requires manual effort by specifically trained testers.

As noted in [McD00], penetration testing typically follows either the flaw hypothesis [Wei73]

or the attack tree [SSSW98, Sch99] approach. The flaw hypothesis approach can be summarized

as a sequence consisting of the following six steps:

1. Definition of penetration testing goals and scope.

2. Completion of a background study.

3. Generation of hypothetical flaws.

4. Confirmation of hypothesized flaws.

5. Generalization of confirmed flaws.

6. Elimination of confirmed flaws.

For the attack trees, as proposed in [Sch99], attacks are modeled as a simple tree with the target

or goal of the attack as the tree’s root. Nodes in the tree can be either conjunctive or disjunctive,

with the root being the latter. Nodes in the tree represent actions. The action represented by

a node can be accomplished if one (for a disjunctive node) or all (for a conjunctive node) of

the actions represented by that node’s children can be accomplished. Leaf nodes model actions

without prerequisites.

Regular penetration testing is a key part of ensuring the security of critical systems and is

required or suggested by several information security standards, such as the Payment Card Industry

Data Security Standard (PCI DSS) [PCI16b] or NIST SP 800-53 [Nat11] and several guidelines on

how such penetration tests should be conducted have been published [Nat08, Pen15]. Nonetheless,

due to the manual effort and tester expertise required to conduct effective penetration testing,

it remains the exception rather than the norm for non-critical systems and should be viewed as

orthogonal and complementary to the software security testing techniques discussed throughout

the rest of this document.

2.4.1 White Box Penetration Testing

As described above, white box or informed penetration tests are those in which assessors have

knowledge of the internal structure and workings of their target, such as source code access in a

software penetration test or knowledge of, for instance, the network layout, IP addresses, host-

names and so forth when targeting a network.

As in the software testing approaches discussed above, such a white box approach offers ben-

efits in efficiency compared to black box penetration testing. However, it does not reveal how easy

it would be for an attacker to gain information about the internal structure and workings of the
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target as that information is already provided to testers and they therefore do not need to discover

it themselves.

In the first of the two classical approaches to penetration testing described in Section 2.4,

the flaw hypothesis methodology, the additional information available to testers can be utilized

effectively in the second step, the completion of a background study, increasing the efficiency and

effectiveness of the remaining steps building on the background study.

2.4.2 Black Box Penetration Testing

In black box or uninformed penetration testing, penetration testers do not have access to knowl-

edge of the target’s internal workings or structure. This more closely corresponds to the situation in

which real attackers would find themselves and forces testers to attempt to obtain the information

they require themselves, using techniques ranging from reverse engineering for software penetra-

tion tests to social engineering when targeting organizations. While this additional step can reveal

useful information about ways in which an attacker might obtain information about the target’s in-

ternal workings or structure, it also increases the penetration testing effort and consequently leads

to additional costs and reduced efficiency.

The second of the two classical approaches to penetration testing discussed in Section 2.4, the

creation of attack trees, maps relatively well to such a setting since attack trees can be constructed

with relatively little knowledge of the penetration testing target’s internal workings or structure

and information acquisition can be modeled as part of the attack tree.

2.4.3 Penetration Test Automation

As discussed in Section 2.4, penetration testing requires significant manual effort and tester exper-

tise, which in practice also entails non-negligible costs. Consequently, attempts have been made

to create automated techniques that can either reduce the manual effort required for penetration

tests (including tools such as vulnerability scanners, which we discuss in Section 2.5) or replace

it outright with a fully automated approach offering the same or similar benefits. Due to the fact

that penetration tests can include steps such as social engineering, full automation is clearly not

a realistic proposition at this stage. Nonetheless, researchers have made efforts to automate parts

of the process, using models of the target system and model-based planning techniques to gen-

erate simulated attacks. Hoffmann gives an overview over the background and challenges in this

research area in [Hof15].

In conclusion, we note that, while tool support exists and continues to improve and automation

is an active research area, thorough penetration testing is a process that requires significant manual

effort and tester expertise. While penetration testing is nonetheless essential for ensuring the

security of critical systems, it is consequently not always feasible for other software systems. In

such scenarios, security testing techniques that are more suitable for automation and do not require

the same extent of tester expertise and target system familiarity should be used as extensively as

possible in order to compensate at least partially for the lack of penetration testing.

2.4.4 Applicability

Table 2.4 summarizes the characteristics of the security testing techniques described in this section

and their applicability to modern cloud-based software systems.
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Table 2.4: Summary of penetration testing techniques for the Cloud

Stage of Life Cycle Artifacts required Level of practical

adoption

Available tools

White-box pene-

tration testing

Verification or later Interface spec-

ifications, full

source code, any

other available

documentation

Low Manual process,

various tools asso-

ciated with other

security testing

techniques may

be utilized by the

tester.

Black-box pene-

tration testing

Verification or later Interface specifica-

tions

Low Manual process,

vulnerability as-

sessment tools are

commonly utilized

by testers.

2.5 Vulnerability Assessment

Generally speaking, vulnerability assessment describes a process whereby vulnerabilities in a sys-

tem are identified and prioritized. In the context of software security testing, as far as the vul-

nerability identification step of the process is concerned, the term frequently refers to the use of

vulnerability scanners and other automated tools to detect potential flaws belonging to known

classes of vulnerabilities. In contrast to the penetration testing approaches discussed in the previ-

ous Section 2.4, this is a much more tool-driven, automated process, although it is worth noting

that many of the tools discussed in this section are also commonly used by penetration testers as

part of their work. We give an overview of the different tool categories along with examples of

each category next, followed by a brief discussion of vulnerability ranking and prioritization.

2.5.1 Vulnerability Assessment Tools

The first and most straightforward step when conducting vulnerability assessment of a remote

system or network is typically a simple port scan to identify the services running on a given host

or range of hosts. Modern tools frequently also include features that allow them to detect the

operating system and network service version running on the remote host, which is a valuable step

particularly if the detected operating system or application version has known vulnerabilities that

are remotely exploitable. The most well known tool in this category is Nmap9, an open source

network mapping and port scanning application.

While port scanners and network mappers merely detect which hosts and services are available

in a network, vulnerability scanners also automatically check if those services are vulnerable to

a set of known exploits. Vulnerability scanners may also check for common misconfigurations,

such as SMTP servers that are accidentally misconfigured as open mail relays. While little manual

effort and testing expertise is required on the part of the users of vulnerability scanners, the auto-

matic tests for known exploits and misconfigurations require significant effort to keep updated and

maintained. Thus, commercial tools in this category, such as the Nessus Vulnerability Scanner10,

may offer access to up-to-date versions of these checks on a subscription basis.

There are also more specifically targeted tools for certain common use cases available, such

9https://nmap.org/
10https://www.tenable.com/products/nessus-vulnerability-scanner
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as the automated security testing of web applications at various stages of their development. Such

tools contain additional functionality specifically aimed at web applications, such as crawlers to

explore the web application, proxies to observe manual tester interaction with the target web ap-

plication and specific checks for common web application vulnerabilities like cross-site scripting

or SQL injection. The degree of automation offered by such tools, the amount of tester expertise

required and the stages of the target web application’s development at which they are suitable for

use varies. A well-known example of this category is the open source tool OWASP Zed Attack

Proxy (ZAP)11 (detailed information is described in Section 2.7 and Chapter 3).

Finally, there are also fully featured, integrated penetration testing software suites available.

These typically integrate various other vulnerability assessment tools and are designed to aid pen-

etration testing by reducing manual effort where applicable. Note that tools in this category do not

fill the same role as the research area of penetration testing automation that we briefly discussed in

Section 2.4 and that these tools still require significant manual effort and penetration testing exper-

tise on the part of the testers. The Metasploit Framework12, an exploit development framework,

falls under this category as does Kali Linux13, a Linux distribution based on Debian and aimed

specifically at penetration testers. Kali includes numerous security and penetration testing tools,

including the Metasploit Framework and Nmap.

2.5.2 Vulnerability Rating and Prioritization

To deal with vulnerabilities in software components, whether it is by expending development effort

to fix them or by deploying mitigation techniques for vulnerabilities in third party components,

administrators and developers alike must first understand the impact of a vulnerability, that is,

the ease with which a potential attacker might exploit it and the extent of the information such an

attacker might obtain and the damage they might be able to inflict on the vulnerable system. In this

section, we briefly discuss what vulnerability ranking and prioritization entails, what approaches

exist and what challenges are associated with this process.

The best-known vulnerability severity assessment approach is the Common Vulnerability Scor-

ing System (CVSS) [FIR15], which is used by, among others, the National Vulnerability Database

(NVD)14 and the CERT Coordination Center15 to rank the severity of software vulnerabilities. In

CVSS v3.0, the current version of the standard, vulnerabilities are ranked according to metrics

belonging to three different groups:

• Base metrics capture those attributes of a vulnerability that are neither affected by the op-

erational environment nor changeable over time. This group is further split into impact and

exploitability metrics, with the former representing the consequences of a successful ex-

ploitation of the vulnerability, that is, the extent of the damage an attacker might do or the

information they might obtain, and the latter representing the ease with which a potential

attacker might be able to exploit the vulnerability.

• Temporal metrics represent attributes that may change over time but are unaffected by the

operational environment of the vulnerable component, such as the Remediation Level, which

11https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
12https://www.metasploit.com/
13https://www.kali.org/
14https://nvd.nist.gov/
15https://www.cert.org/
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would be affected by the availability of an official patch for the vulnerability but is indepen-

dent of the operational environment.

• Environmental metrics represent attributes of the vulnerability that are dependent on a par-

ticular operational environment, such as modifications of base metrics, for instance due to

the presence of mitigation mechanisms that affect exploitability.

Analysts score vulnerabilities according to metrics belonging to each group, resulting in a

numerical score in the range 0 to 10, with 10 representing the highest vulnerability severity.

It has been noted [FM09] that relying on an assessment based only on the most widely used

of the three metric groups, the base metrics, is problematic as it fails to take the context in which

a vulnerable component is operating into account. Incorporating temporal and especially environ-

mental metrics can improve the accuracy with which the vulnerability score represents the actual

severity of a vulnerability for a particular organization, which in turn helps in prioritizing vulnera-

bilities for fixing or mitigation. However, making use of the additional metric groups, particularly

the environmental metrics, also imposes additional effort and cost as analysts need to customize

their scoring for different operational environments and potentially rescore vulnerabilities over

time as temporal metrics change.

In practice, then, it is not uncommon for users and administrators to exclusively consider

the base metrics, in which case the resulting severity estimate may be inaccurate or even mis-

leading. Furthermore, vulnerability impact ratings may initially underestimate the severity of a

vulnerability [AAD+09] and rankings do not cover potential interactions between multiple flaws

or vulnerabilities resulting in increases in exploitability or impact.

2.5.3 Applicability

Table 2.5 summarizes the characteristics of the security testing techniques described in this section

and their applicability in the cloud context.

Table 2.5: Summary of vulnerability assessment techniques for the Cloud

Stage of Life Cycle Artifacts required Level of practical

adoption

Available tools

Network mappers

and scanners

Verification or later Operational target

system (possibly

in a segregated test

environment)

High nmap, numerous

other tools, both

open source and

commercial, are

available

Vulnerability scan-

ners

Verification or later Operational target

system (possibly

in a segregated test

environment)

Medium Various commercial

tools, e.g. Nessus

Vulnerability Scan-

ner

Web Application

scanners

Verification or later Operational target

system (possibly

in a segregated test

environment)

Medium OWASP ZAP and

others
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2.6 Test Parallelization for Security Testing

Throughout our discussions of various approaches and techniques for security testing in this chap-

ter, we have pointed out efficiency concerns where applicable. We have also noted the need,

particularly in modern cloud and multi-cloud systems, to focus testing efforts on interfaces. As

discussed in Section 2.2.1, security testing is quite closely related to robustness testing16 (with

fuzzing, one of the most popular software security testing techniques today starting out as a de-

pendability testing approach).

For a robustness testing, a perturbation analysis is needed to investigate how a target system, or

parts of the system, behave under anomalous (i.e., perturbed) operational conditions. In practice,

perturbation analysis simulates various scenarios to represent deviations from standard system

specification (also called “misuse cases”). The underlying assumption is that those anomalous

cases have not been taken into account during the system designing stage and the corresponding

reactions might not have been specified. Contrary to traditional functional testing (correctness

testing)17 and penetration testing18, the primary target of perturbation analysis is to assess system

robustness. It is important to mention that perturbation analysis is not an approach to determine

system correctness, but primarily to assess the performance of robustness/fault-tolerant mecha-

nisms of the target system when encountering perturbations.

Thus, while robustness testing techniques like Software Fault Injection (SFI) are used to exper-

imentally assess the robustness of software systems against faults arising from hardware devices,

third-party software components, untrusted users and other sources, and software security testing

techniques like fuzzing are intended to assess the resilience of such a system against deliberately

malicious actors, due to the randomized nature of fuzzing in particular, the overlap is immense.

This also means that many of the same concerns about testing efficiency and throughput apply in

both scenarios.

Given the high complexity of modern software, robustness and security testing alike typically

require a significant number of experiments to cover all relevant cases for the validation of fault-

tolerance or security mechanisms, with studies reporting thousands, or even millions, of injected

faults [KD00, AFR02, DLAS+12, NCDM13] or mutated inputs [Oeh05]. The problem of high

experiment counts is exacerbated by evidence that simultaneous perturbations, i.e., combinations

of several injected faults or several corruptions in the mutated input, need to be considered as

well. Recent studies [GDJ+11, JGS11] show that failure recovery protocols in distributed systems

exhibit vulnerabilities to simultaneously occurring faults and can, hence, only be uncovered by

injecting fault combinations. A “combinatorial explosion” of the number of experiments is the

consequence. Similar findings were obtained in recent work on operating systems and software

libraries, which showed that software faults cause the simultaneous corruption of several interface

parameters as well as shared memory contents [LNW+14] and that simultaneous corruptions can

uncover robustness issues which would not be found by singular corruptions [WTSS13]. Fuzzing

tools have similarly proven more capable of uncovering security issues when generating higher

order mutations of program input, and subjecting previously mutated input to further mutations is

commonplace in widely used fuzzing applications, including the state of the art fuzzer AFL [Zal].

Despite the demonstrated utility of simultaneous fault injections and higher order input muta-

16Refers to the correctness of implementation (in particular referring to availability and integrity) in the presence of

failures.
17Usually a stable architecture and source code level implementation details are needed
18Requires highly skilled people and can cause interruption of network services
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tions, the combinatorial explosion of the number of experiments remains a considerable challenge

for their applicability.

In order to cope with the high number of experiments or test cases, two different strategies

can be adopted. The first strategy attempts to reduce the number of experiments that need to

be performed. Search-based techniques and sampling strategies for large test sets (e.g., [JH08,

SAM08, JGS11, NCDM13]) fall into this category. The second strategy attempts to utilize the

increasing computational power of modern hardware, where several experiments are executed

at the same time on the same machine (parallelization) to better utilize the parallelism of the

underlying hardware (e.g., [Las05, DCBM06, OU10]).

While parallelization (“throwing hardware at the problem”) is less elegant, it is an appealing

solution since it is generally applicable, whereas the applicability of sampling and search-based

techniques depends on domain-specific knowledge in most cases. Parallelization, therefore, seems

to be a promising solution to cope with the high number of experiments and test cases, especially

as it can be combined with domain-specific sampling and pruning.

Nevertheless, parallelization relies on an implicit assumption that executing several experi-

ments in parallel does not affect the validity of results. We hypothesize that this assumption is

not trivial. Even if the experimenter takes great care to avoid interference between experiments

(e.g., by running them on separate CPUs or virtual machines), there is a number of subtle fac-

tors (such as resource contention and timing of events) that can change the behavior of the target

system (e.g., faults can lead to different failure modes than those observed under sequential exe-

cution), thus invalidating the results and negating the benefits of parallelization. This is a concern

especially for embedded, real-time, and systems software, which are an important target of fault

injection experiments and security testing alike, and where studies have shown that faults often

exhibit non-determinism and time-sensitive behavior [CGN+13, AFR02].

A straightforward way to avoid such concerns would be to simply scale up the number of

machines used for test execution, parallelizing tests not by executing multiple test cases on the

same machine at the same time but by executing N different test cases on N different machines.

This straightforward approach to test parallelization, illustrated in Figure 2.3 with a centralized

control instance, sidesteps concerns about test interference or threats to result validity by avoiding

parallel test execution on each individual instance, but as a result it is highly inefficient, in terms

of resource utilization as well as cost. A solution that allows more efficient hardware utilization

and consequently lower costs and better testing efficiency is highly desirable.

Hence, in order to conduct efficient and accurate parallelization, we have developed PArallel

fault INjections (PAIN) as a framework for executing perturbation tests, such as software fault

injection (SFI) experiments, in parallel. As SFI, much like extensive security testing, is applied

mostly for the assessment of critical systems, a major concern that outweighs performance con-

siderations is the confidence in the validity of the experimental results; it is of utmost importance

to avoid interference of PAIN experiments that affects their outcome. In addition to experiment

throughput, we therefore also need to assess the validity of results from parallel experiments. To

this end, we have developed an experimental environment for the study of parallel perturbation

tests and similar system-level tests, including fuzzing-style security testing. Furthermore, we pro-

vide guidelines to tune the main factors that affect experiment throughput and the validity of PAIN

experiments, including the degree of parallelism and failure detection timeouts. These guidelines

are based on a qualitative and quantitative analysis of the impact of parallelism on the result valid-

ity and experiment throughput of extensive fault injection experiments that we have conducted on

the Linux kernel under an Android emulator environment. For a more detailed discussion of the
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Figure 2.3: Simple test parallelization using separate machines

experiment evaluation and the corresponding results, refer to [WSN+15].

Essentially, there are two key questions that need to be addressed:

1. Can parallel execution of multiple software fault injection experiments or security testing

test cases on the same machine increase the throughput of the robustness or security testing?

2. Do the results obtained from such executions differ from those obtained with sequential

executions of the same experiments or test cases?

If the answer to the first question is positive and the answer to the second question negative,

then perturbation test parallelization has no adverse effects and should be applied whenever paral-

lel hardware is available. However, if the answer to the first question is negative and the answer to

the second question positive, parallelization should be avoided. If both answers are negative, the

decision whether to parallelize or not should be driven by other factors, such as hardware cost or

complexity of the experiment setup. If both are positive, parallelism can be beneficial, but it can

also potentially affect the accuracy of results. In this case, we need to investigate a third question:

3. Can the parallelization of experiments or test cases be tuned to achieve the desired increase

in throughput while avoiding inaccuracies in the obtained results?

As discussed in [WSN+15], experiments involving the parallelization of perturbation tests

with corrupted Linux kernel modules on emulated Android systems showed the answer to both of

the first two of the questions laid out above to be positive, that is, parallel execution of perturbation

tests increases throughput and affects the results compared to sequential execution. Moreover,

the observed changes are the most pronounced for those experiments that result in two failure

modes that depend on timeouts for detection. This result is both highly relevant and directly

applicable to security testing as well, since numerous security testing approaches and tools, most

notably those falling into the fuzzing category, including AFL [Zal], the current state of the art

fuzzer, rely on timeouts to detect hangs of the target program. Consequently, we suspect that

the increased rates for parallel experiments are false positives of these detectors and that their

timeouts need adjustment in the parallel case. This, then, introduces a tradeoff, as laid out in the
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third question posed above: High timeout values negatively affect throughput whereas low timeout

values threaten result accuracy by way of false positives.

A naïve approach to avoid these false positives would be to increase the timeout values with the

number of parallel instances. However, as the degree by which execution times increase with the

numbers of instances is generally unknown and also depends on the execution platform (hardware

and OS), this entails an iterative process of trial and error until suitable timeout values are found.

A better strategy is to estimate values based on observations made during so-called golden runs

on the intended execution platform without perturbations. Such runs should be performed for each

targeted level of parallelism and relevant timing data be recorded as a baseline to derive suitable

timeout values. However, while such an approach can result in a clear improvement over constant,

unadjusted timeout values, differences between the timing behavior exhibited during calibration

runs and actual experiment runs can nonetheless lead to significant levels of false positives.

Since, as the results in [WSN+15] show, a dedicated calibration setup may exhibit different

timing behavior than real test executions, we conclude that timing data from real perturbation tests

should be used for choosing suitable timeout values when applying parallelization.

Using the 99.99 percentile of a distribution fitted to the timing data from actual perturbation

tests, we obtained a number of hang detections comparable to the original perturbation tests with

tripled timeout values, confirming the suitability of our approach. With timeout values of compa-

rable or even better accuracy than the previous trial and error approach, our systematic approach

to calculating timeout values is preferable if it results in acceptable overhead. We illustrate the

resulting process for test parallelization using a single machine in Figure 2.4. Since, despite the

efficiency gains that intelligent test parallelization entails, utilizing multiple machines to execute

test cases is nonetheless necessary to enable the testing of large scale software systems within a

reasonable timeframe, we also illustrate the setup that results from applying the PAIN process in

such a scenario in Figure 2.5. In such a scenario, a straightfoward realization of efficient test par-

allelization can be achieved by applying the adjusted timeout values obtained with PAIN to each

machine and splitting the set of test cases between the available machines.

Figure 2.4: PAIN test parallelization on a single machine

As software systems become more complex and, at the same time, tend to exhibit sensitivity

to complex perturbations or fault conditions [GDJ+11, JGS11, WTSS13, LNW+14], the number
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Figure 2.5: PAIN test parallelization using multiple machines

of relevant fault conditions and input mutations to test against also increases drastically. The

simultaneous execution of such tests on parallel hardware has been advocated as a viable strategy

to cope with rapidly increasing test counts. We have addressed the question whether such strategies

can be applied to speed up perturbation tests by performing PArallel INjections (PAIN). Besides

assessing the speedup of experiment throughput, we address the question whether PAIN affects

the accuracy of such perturbation tests.

Our results show that while PAIN significantly improves the throughput, it also impairs the

accuracy of the test results. We found that result inaccuracy is related both to the degree of par-

allelism and to the choice of timeout values for failure detection, due to resource contention and

timing of events that influence the tests. Therefore, we provide guidelines to tune the experiments

using data from preliminary test executions, in order to achieve the best test throughput while

preserving result accuracy.

2.6.1 Applicability

Table 2.6 summarizes the characteristics of the test parallelization techniques described in this

section and their advantages and drawbacks.

Table 2.6: Summary of test paralellization techniques

Advantages Drawbacks Level of practical

adoption

Available tools

Naïve paralleliza-

tion

Simple to imple-

ment, no additional

tools or analysis

required

Validity of obtained

results is question-

able

Medium None required

PAIN-based paral-

lelization

Preserves result va-

lidity while improv-

ing throughput

Requires additional

analysis steps

Low PAIN
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2.7 Guidelines, Methodologies and Tools

Since software security remains challenging and the consequences of breaches can represent sig-

nificant business risks, but many organizations are lacking the internal expertise to develop exten-

sive, appropriate security testing guidelines, numerous groups have proposed general methodolo-

gies and guidelines that organizations can adopt (with adjustments to their specific situation) in

order to improve the security of the software they build. In this section, we will briefly discuss two

such guidelines: The OWASP (Open Web Application Security Project) Testing Guide [MM14]

and the Open Source Security Testing Methodology Manual (OSSTMM) [HB10]. Finally, two

tools have been developed within ESCUDO-CLOUD for carrying out perturbation analysis based

on fault injection processes.

2.7.1 OWASP Testing Guide

The Open Web Application Security Project (OWASP) is a nonprofit organization that aims to

improve the state of web application security by creating educational resources and guidelines for

developers and organizations. The organization is perhaps best known for the OWASP Top Ten19,

a list of the ten web application security risks the organization deems the most critical, complete

with example vulnerabilities and attacks as well as guidance on how to avoid the issue. OWASP

also provides several extensive guidelines on web application security, including the OWASP De-

veloper Guide, Code Review Guide and the Testing Guide which we focus on here.

The OWASP Testing Guide is an extensive guide to web application security, starting with an

overview of the scope, pre-requisites and principles of web application security testing and the role

of security testing throughout the software development life cycle. The bulk of the guide is made

up by an extensive overview of web application security testing objectives, techniques and tools

(including guidance on the effective usage of some of the security testing tools discussed in this

report, such as those in Section 2.5). In particular, it contains guidance on how to test for classes

of vulnerabilities that are especially common in or specific to web applications, such as flaws in

input validation or session management on the server side or cross site scripting on the client side.

2.7.2 Open Source Security Testing Methodology Manual

The Open Source Security Testing Methodology Manual (OSSTMM) by ISECOM20 is a manual

that aims to provide a complete methodology for assessing security. Unlike the OWASP Testing

Guide discussed above, the OSSTMM is not a software testing guideline. Rather, it aims to deal

with overall operational security and thus also addresses other operational channels, including

human factors and physical security. Software or more generally computer system and network

security issues are also covered, but they are neither the sole nor the primary focus of the guide-

line. Consequently, much of its content lies outside of the scope of this document. It underlines,

however, that ensuring security is not limited to software security testing, and that a full security

audit needs to take all channels that might be available to attackers into account.

Particularly in modern cloud and multi-cloud settings, it is not always easily possible for cus-

tomers to determine the extent of the attack surface or to evaluate the quality of the security mea-

sures taken by the cloud service provider with respect to such channels as physical access. In such

settings, full security audits can be valuable in addressing customer concerns over data security.

19https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
20https://www.isecom.org/
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We draw two key conclusions at this point: First, software security alone is insufficient for

ensuring system security, and consequently, software security testing alone is insufficient for as-

sessing overall system security. Consequently, any approach that neglects other, conventional

penetration testing and security auditing steps in the pursuit of automation may face vulnerabil-

ities by way of other channels. Secondly, in modern cloud and multi-cloud settings, customers

may not have enough control over how the infrastructure they rely on is operated to ensure that it

is not vulnerable to attacks by other channels (such as physical or organizational). Consequently,

the components that they have full control over, most importantly the software they are deploying,

need to be hardened to be as resilient to such attacks as possible. In practice, this generally means

treating infrastructure and third party components as untrusted. This, in turn, also has implications

for software security testing: With little to no control over the infrastructure and frequent interac-

tions with interchangeable third party components, access to which for testing might be limited,

security testing necessarily needs to focus on the interfaces to those components.

2.7.3 Developed Supporting Tools

The following two developed tools (GRINDER and PAIN) support the fuzzing based test injec-

tion processes. While both the tools have been developed primarily with a dependability testing

perspective, both the tools support the basic fuzzing processes for both dependability and security

testing.

• As each use case differs in its implementation, GRINDER helps develop a common base

for portability of the test injection processes to different environments.

• PAIN supports the test acceleration aspects discussed in Section 2.6

Both of the developed tools are available for public use:

GRINDER (GeneRic fault INjection tool for DEpendability and Robustness assessments)

GRINDER is a fault injection testing framework that has been developed with the goal of easy

adaptability to various injection targets and scenarios. While a large number of different fault

injection tools exist that all target injections of specific fault types into specific locations of spe-

cific target systems (i.e., they only work for a very specific experimental assessment), GRINDER

can be reused across a large variety of different systems. To support different target systems,

GRINDER introduces an abstract interface to target systems. For each target of a fault injection

campaign, a controller extension for this target has to be implemented and linked with GRINDER,

so that GRINDER can initialize, reset, and stop the target and trigger experiment executions. To

demonstrate its versatility (for both dependability and security testing) we have successfully used

GRINDER in experiments with the Linux-based Android kernel and the safety mechanisms in a

commercial AUTOSAR distribution. Our experience with GRINDER’s usage and code reusability

for these scenarios is documented in the ESCUDO-CLOUD publication [WPS+15]. GRINDER’s

source code is available on github under the AGPL v3 license 21.

PAIN: A framework for PArallel fault INjection experiments As already mentioned in Sec-

tion 2.6, injection experiments (e.g., fuzzing injections) are a common approach to assess the ro-

bustness of component-based software systems or, more precisely, the absence thereof. In order to

21https://github.com/DEEDS-TUD/GRINDER
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find out if adverse behavior of less critical components affects the reliable operation of more crit-

ical components in the software system, tests/faults are injected into the former and the behavior

of the latter is observed in their presence. As these tests are usually conducted on fully integrated

systems, individual fault injection experiments tend to have long run times. PAIN (PArallel fault

INjection) exploits parallel hardware to improve on fault injection experiment throughput by exe-

cuting multiple experiments concurrently. PAIN is based on the GRINDER injection framework.

To demonstrate throughput improvements, we have conducted injections on the Linux-based An-

droid OS kernel. Although experiment throughput was greatly improved by concurrent executions,

we also observed significant deviations in the obtained result distributions, i.e., concurrent exper-

iment executions led to different results than sequential executions. We identified time-sensitive

failure detectors as a major cause for the observed deviations and proposed a systematic time-

out calibration strategy for their elimination. The details of our study have been published in the

ESCUDO-CLOUD publication [WSN+15]. All source code and configurations used in our study

have been released on github under the AGPL v3 license 22.

2.8 Summary of security testing techniques

This section evaluates the security testing techniques groups described in previous sections. The

analysis is done according to two parameters:

• The resources required. Some techniques require more resources than others to be able to

apply them. For example, some white box testing approaches, such as symbolic execution-

based approaches, can be very computationally extensive and consequently require signifi-

cant resources both in terms of time and required hardware to execute, whereas other tech-

niques, like many static analyses, can be comparatively cheap to execute.

• The stage of the life cycle where it is applied. Not all the security testing techniques can be

applied in all stages of the cloud service provision. Some of them can only be used at imple-

mentation time (for example, those that require the availability of the code). Others are only

suitable to be applied once an operational system exists, such as vulnerabiltiy assessment

techniques.

Table 2.7: Security testing techniques over the cloud provisioning life cycle

Resource

demand

Specification Design Coding Verification Operation and

maintenance

High Traceability

(out of scope

in ESCUDO-

CLOUD)

Model-based White/Grey

box (e.g. sym-

bolic execution,

instrumentation-

guided testing)

Black box (e.g.

fuzzing)

Penetration test-

ing

Low Traceability

(out of scope

in ESCUDO-

CLOUD)

- White box (e.g.

static analysis)

Black Box

(e.g. DBI-based

checks)

Vulnerability

assessment

Table 2.7 describes the mapping between the techniques described and the two aforementioned

parameters.

22https://github.com/DEEDS-TUD/PAIN
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We stress the importance of utilizing intelligent test parallelization approaches in order to

increase security testing efficiency while maintaining result validity. Utilizing such parallelization

approaches can render computationally expensive security testing techniques feasible in scenarios

where they otherwise would not have been.

The availability of the required resources and the stage of the cloud service life cycle de-

termine the applicability of the various security testing techniques. We use this information in

Section 4 to evaluate the requirements of the system. The evaluation (i.e., the potential impact, the

resources involved) allows us to identify the stage of the life cycle where it applies and determine

the availability of the resources. With that information we can clearly identify the techniques to

use for every requirement gathered from the four use cases of ESCUDO-CLOUD (resulting from

the activities carried out in WP1).
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3. Application Level Verification Techniques

Cloud computing offers great opportunities for data owners to access scalable, cheap storage and

compute resources to manage and protect their data. However, without adequate trust and strong

integrity assurance, the challenge remains to provide the security levels expected by data owners

to confidently move their assets to a CSP. Integrity checking of applications becomes critically

important as data owners move their data to the cloud, entrusting the CSP, and applications run-

ning on the CSP (whatever the model - SaaS, PaaS, IaaS), with the security of that data. While

it is important to first ensure the confidentiality and integrity of the data stored at the CSP, the

applications responsible for the management of that data must also be verified to ensure they are

neither compromised nor corrupted. In addition, the integrity of the virtual machine on which the

application is running must be monitored to ensure the integrity of the application environment.

CSPs have introduced security mechanisms and policies over recent years to to secure their

systems, in order to minimize the threat of attacks (both external and insider), and reinforce the

confidence of customers. For example, they protect and restrict physical access to their datacen-

tres, implement accountability and auditing processes, and apply strict access controls over critical

components in the infrastructures (e.g., separation of duty principles) [PPB03]. The threat remains

however that insiders with administrative power over software or hardware in the CSP can over-

ride these security mechanisms to access customer VMs. Therefore, to provide further assurances

for the confidentiality and integrity of customer VMs, applications and data, new solutions need

to be implemented that allow the customer to verify the status independently.

A typical scenario for an insider attack on a VM, or application running on a VM requires

that the attacker have administrative capabilities over the physical infrastructure of the CSP. This

can potentially, depending on the security policies enforced, enable a single rogue administrator

to access the memory of executing VMs. Assuming the attacker can also gain root privileges on

the VM, it is possible then to perform attacks running malicious software or manipulating user

applications.

The following sections will highlight some of the techniques available for ensuring the in-

tegrity of applications through their development, distribution and use, including verification of

cloud/web applications and their interfaces. Section 3.1 will first cover the processes recom-

mended for the application development environment and how to integrate mechanisms for the

verification of the application by the application consumer. Section 3.2 then covers the techniques

and recommendations for ensuring the security of applications and for monitoring their integrity

to prevent malicious modification. Without a secure virtual environment, subsequent measures to

mitigate risks to the integrity of applications could be compromised or remain undetected for an

extended period of time. Section 3.3 introduces the concept of Trusted Computing, covering a

range of technologies for establishing a root of trust in hardware that provides a chain of trust up

to the OS and to the application itself.
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3.1 Code Integrity

The first step in considering the integrity of an application is to ensure that processes are in place

for protecting code integrity. As a pre-requisite, this includes steps for code classification and

inventory management. Code classification is an assessment that allows application developers to

tier code into different levels to which security policies can be applied. Source code classification

requires analysis of the content of source code which is organized into distinct components or

modules to determine its inherent level of sensitivity. This process takes into consideration the

relative values of three information attributes as they pertain to the content of the source code

undergoing analysis. The following list defines these attributes:

• Confidentiality: The degree to which source code must be protected from unauthorized

disclosure that could negatively impact the developer.

• Integrity: The degree to which source code and binary code must be protected from unau-

thorized modification that could negatively impact customers.

• Compliance: The degree to which source code requires legal review prior to being shared

or disseminated externally. Compliance primarily applies to source code that contains regu-

lated material (e.g., export restricted content such as cryptographic source code) or requires

government notification or approval to disclose or distribute.

The Classification Tiers are defined as follows:

• Tier 1: A segregated class of source code that is highly sensitive in nature and requires

additional protection measures to ensure the integrity of the products it relates to. Tier 1

source code is a subset of source code with high integrity and high confidentiality informa-

tion attributes which is identified after undergoing a comprehensive review with a security

team.

• Tier 2: Source code that is less sensitive in nature than Tier 1 source code and is not generally

provided to customers or broadly shared with partners.

• Tier 3: Source code that is generally provided to customers or broadly shared with partners

as part of standard business practices.

For example, Tier 1 code is considered highly sensitive and confidential, requiring more strin-

gent security policies to restrict access. An architectural consideration for Tier 1 code is how to

deal with integration into part of a product. Are there, for example, some significant restrictions on

what activities can be performed in certain geographies based on the tiering plus the risk associated

with the build and development locations for the code?

One of the steps/activities which we would pursue with Tier 1 code is to look at code modu-

larity:

• Can the highly sensitive material be segregated from the rest of the code base?

• What is the classification of the base without the Tier 1 code in it?

Inventory management allows developers to track the resources within their environment. It is

not possible to maintain, let alone secure, that which you do not know exists. This includes not
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only high level server information but a fine grained inventory of physical, virtual, application and

OS layers as well as the relationships between them. The process requires continuous refreshing

via either manual or systematic/automated processes to keep the inventory accurate. From a per-

sonnel perspective, clear responsibilities need to be established for who owns what layers and how

they interact with each other.

Virtualization adds a layer of complexity for high value assets, like source control systems

or repositories, which many people do not consider. There needs to be a standard relationship

mapping for which physical devices host what virtual environments, and what OS and applications

run on those physical and virtual machines. The critical issue arises when you start to consider

the portability of VMs. Tools like vMotion are adept at keeping the environment performance

optimal1. However, the potential exists where you could vMotion a high value system out of a

secure environment if you do not add the vMotion/vCenter relationships into your architectural

planning. Essentially, the software takes a VM off of a compliant physical unit for performance

(or some HA task) and moves it to a physical host which may have the bandwidth to ensure

performance but it is a non-compliant environment, lacking basic and necessary security controls

to ensure data security.

Authentication and access control mechanisms require attention too, as these are the tools used

to control who ultimately has access to product code. Authentication services are available today

for both Windows and Linux systems tying into Active Directory (AD) systems. It is also possible

to connect applications to a Single Sign On (SSO) infrastructure for improved user experience.

AD groups for access control are created and the user management, including re-attestation of

’proper access’, can be done as scheduled tasks. Periodic review of user access to systems and

their access level should be a requirement across organisations, making it easier to manage both

personnel and privilege. To that end, AD Groups can provide better granularity for control as you

can segment users by role, team, function or geography. Employee terminations and the removal

of access to the systems can be configured to automatically occur when an account is disabled

in the corporate AD. Additionally, from an auditing standpoint, these steps demonstrate that an

organisation has well defined and controlled processes for its sensitive material.

3.1.1 Build Process Integrity

A Release Manager (person responsible for ensuring the integrity of the product code) is respon-

sible for ensuring that the build scripts that produce the final product components for customers

are in a system that is protected. They are also responsible for ensuring that write access to the

build scripts is limited only to those individuals involved in building the components. The Release

Manager also has the power to authorize access to scripts or build jobs which are used to produce

the final release build. These scripts and build jobs must be protected with write access limited to

individuals involved in building components as determined by the Release Manager. By restrict-

ing read access to the scripts used to produce the final product, the developer limits the ability of

an attacker to infer weaknesses inherent in a product based on build process such as flags used by

a compiler. By restricting write access to the scripts used to produce the final product, attackers

are limited in their ability to modify the build process and inject code from a non-authorized lo-

cation, thereby bypassing review and approval processes designed to protect against the threat of

malicious code. This infers a requirement to also restrict access to official build hosts to Users

1http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-evc-

performance-white-paper.pdf
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approved by the Release Manager.

3.1.2 Code Signing

In order to help guarantee the integrity and authenticity of code published by a developer, product

teams should use code signing to create a digital signature that allows customers to trust the prod-

ucts they are installing and using, and ensure they are valid products. By performing code signing,

the ability of a malicious entity substituting product code with their own is limited. Code signing

adds a digital signature to product artefacts (e.g., drivers, binary files, or configuration files) to

authenticate the origin of the artefact and provide a claim of integrity by the author. Signing code

involves more than simply invoking a command as part of the build process.

Digital certificates and associated public/private key pairs used to sign product binary code in

order to confirm authenticity and integrity. A code signing certificate comprises a set of data that

completely identifies an entity, and is issued by a certification authority only after that authority

has verified the entity’s identity. The data set includes the entity’s public cryptographic key. When

product binary code is signed with a private key, the recipient can use the corresponding public

key retrieved from the certificate to verify the identity of its publisher.

Binaries can be signed with embedded digital signatures. Other files (as well as binaries)

can be signed in the Windows environment by using a signed catalogue (a .cat file) that contains

hash values and is by itself signed with an embedded digital signature. Signed catalogues are an

example of detached signatures, where the content signed and the signature itself are not in the

same file (the catalogue contains a hash of the content to be signed and is by itself signed).

3.2 Application Integrity

In addition to the steps outlined in the previous sections for ensuring code integrity during de-

velopment and distribution, the section will outline some general recommendations for ensuring

application integrity.

Application hardening techniques should be implemented to protect the application, such as

encryption, obfuscation, or binary modification. These approaches can secure applications from

reverse engineering and application tampering, and increase the difficulty in gaining unauthorized

access. Encryption and obfuscation are considered to be baseline techniques to be used for all ap-

plications. For higher sensitivity applications however, further techniques should be implemented

such as runtime tamper detection (e.g., checksums), runtime environment checks (root and de-

bugger detection), self-healing during runtime (e.g., replace tampered code with original code),

etc.

When evaluating a plan for application hardening, it is important to consider all aspects and

associated components of the application (e.g., What OS is it running on? What 3rd party ap-

plications or libraries does it depend on?). Changes in these components can negatively impact

the security of the application to be protected. Updates to an OS, browser or plugin could open

vulnerabilities in the application environment that can be exploited. Even security patches can

potentially expose the application to a new vulnerability, particularly when patches are rolled out

quickly without an adequate patch configuration and testing plan in place.

Runtime detection of anomalies in the execution of an application or its environment have

already been identified as an approach for ensuring the integrity of the application. The analysis

these components can be broken down into three categories:
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• Static Analysis - The testing and evaluation of an application by examining the code or

binary without executing the application. This approach detects security vulnerabilities by

analysing the application and/or its source code directly. The benefits of static analysis

provide the best return when integrated into the development process using automated tools

to achieve a high level of code coverage.

• Dynamic Analysis - The testing and evaluation of an application during runtime. This ap-

proach typically automates penetration testing processes to test the application against a va-

riety of attack scenarios enabling it to uncover vulnerabilities not easily detected via static

analysis techniques.

• Hybrid Analysis - Combines two approaches to improve on dynamic and static analysis

providing improved accuracy and detection rates; 1) dynamic analysis is executed against

the target application; 2) analysis is run on the target server.

Finally, software composition analysis techniques can be used to review the composition of

software source code and binary files, identifying embedded libraries or sections of code that have

known vulnerabilities. As it will be highlighted in Section 3.2.1, there are a number of recom-

mendations from standards bodies such as PCI and OWASP that include explicit requirements for

addressing component level vulnerabilities. A number of security vendors have commercial offer-

ings that enable developers to detect and remediate any vulnerabilities that are known to exist in

third party libraries and open source code included in their application.

3.2.1 Web Application Security

Web application vulnerability scanning performs a process called spidering to identify the pages

within the application. Each page, and the fields within the application, are tested to uncover

common weaknesses such as:

• Cross-site scripting (XSS)

• HTTP response splitting

• Cross-site request forgery (CSRF)

• Clickjacking

• Disclosure through browser caching

The effective use of scanning tools to evaluate the security of a web application requires that

the testing team understand the complexities of the target web applications and the importance

of properly configured assessment tools. Every engagement requires a thorough understanding of

the application, ensuring technologies, authentication and session management mechanisms are

thoroughly understood before automated scanning begins. Tools such as IBM Security AppScan2

and Burp Suite 3 are useful for performing deep manual and automated assessments of web-based

applications

Another technique for protecting web servers and applications from malicious attacks is through

the use of Web Application Firewalls (WAF). These are firewalls that examine traffic going to and

2http://www-03.ibm.com/software/products/en/appscan
3https://portswigger.net/burp
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from a web application in an effort to detect and block real-time exploits or attack attempts. WAFs

also have a much deeper understanding of the application than network Intrusion Detection and

Prevention Systems (IDPS) systems. WAFs use a combination of detection techniques including

signature-based, rule-based and anomaly-based, and can be configured to either adopt a white-list

(default deny all transactions except those known to be valid or trusted) or black-list (default allow,

examining transactions for indicators of an attack). Regardless of the detection strategy selected,

WAF undergoes a learning period to learn how traffic to and from the web application behaves so

that anomalies can be detected.

OWASP Application Security Verification Standard Project

The Open Web Application Security Project (OWASP) is an open organisation that aims to im-

prove the security of software providing information and tools to individuals and organisations

for application security. Through this organisation, several open frameworks and tools have been

developed providing mechanisms for securing web applications. Security of an application begins

at its development and it is therefore recommended to follow the OWASP Developer Guide for

secure software engineering when developing applications for the web such as those proposed in

the ESCUDO-CLOUD use cases.

OWASP identify ten proactive security techniques that should be included in software devel-

opment processes 4:

• Verify for Security Early and Often - Integrate security testing plan into development cycle

• Parametrize Queries - Prevent untrusted inputs from being interpreted as part of an SQL

command

• Encode Data - Prevent injection attacks by sanitising characters to a safe form for the target

interpretor

• Validate All Inputs - Check that all input is syntactically and semantically valid

• Implement Identity and Authentication Controls - Verify that an individual or entity is who

it claims to be

• Implement Appropriate Access Controls - Apply rules to who can access what services or

resources

• Protect Data - Encrypt data in transit or at rest

• Implement Logging and Intrusion Detection - Used to identify attacks early and to conduct

investigations after the attack

• Leverage Security Frameworks and Libraries - Guard against security related design and

implementation flaws by using rigorously tested secure libraries and frameworks

• Error and Exception Handling - Handle all errors and exceptions to ensure application be-

haves reliably and maintains a stable state

4OWASP Top Ten Proactive Controls 2016
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While each of these techniques are relevant to all secure development processes, a number

of them bear particular relevance to ESCUDO-CLOUD. A publicly exposed API presented to

users of ESCUDO-CLOUD should ensure that any parameters passed to the service are sanitised.

Implementing this prevents SQL injection attacks that can lead to a compromise of the application

database. Potentially more devastating is the ability of an attacker to run OS commands against

the OS hosting the database. Most development frameworks support query parametrization to

mitigate the risks of such attacks. Closely linked to this is the validation of all inputs to ensure that

any data entered by users is checked so that it is both syntactically and semantically valid before

being used.

As the use cases selected for the demonstration of ESCUDO-CLOUD require the user man-

agement to access features and services, the correct implementation of identity and access controls

is required to verify user identities. Session management should form part of this so that servers

used to deliver the applications maintain the state of a user interacting with it. Sessions are tracked

by a unique session identifier, that is computationally impossible to predict, which can be passed

between the client and server when transmitting and receiving requests. In order to reduce the

risk of an attack during an active session (e.g., session hijacking), an inactivity timeout for each

session should be set. The determination of a timeout period should reflect the sensitivity of the

asset which it protects. To provide the authentication component of the access controls, there are

a multitude of approaches to select from, including password, smartcard, biometric, token-based

authentication etc.

When considering the integrity of the platform and applications, logging and monitoring are

invaluable tools to detect intrusions and irregular behaviour quickly which can limit the impact

of an attack and help to prevent further attacks. Logging and tracking security events ensures

that your cyber security controls and testing are up to date with real world attack campaigns and

strategies. The OWASP AppSensor project5 describes a framework for implementing application

level intrusion detection and automated response features into existing applications. Similar to

the WAF discussed in Section 3.2.1, this approach is distinct from traditional IDPS that operate

at the network level. The core idea of the project is to use detection points in the application to

gain visibility into the internal operations of the application. This information can be useful for

the advanced detection of unusual activity or behaviour of an application before an attacker has

the opportunity to exploit vulnerabilities in the system/application. Building on existing tools and

frameworks, AppSensor aims to:

• Detect attackers (not vulnerabilities)

• Act as an application-specific solution

• Avoid the use of signatures for attack predictions

• Allow applications to adapt in real-time to attacks

• Reduce the impact of an attack

• Provide security intelligence

With full knowledge of the application business logic, and the roles and permissions of the

users, the AppSensor framework can make informed decisions about irregular patterns in be-

5https://www.owasp.org/index.php/OWASP_AppSensor_Project
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haviour. Once an attack is identified, an alert can be raised to trigger a response action (e.g.,

shut down application VM, quarantine application, restrict access to application, etc.).

The objective of the OWASP Application Security Verification Standard (ASVS) Project [OWA16]

is to provide a standard basis for testing web applications security controls. Adoption of the rec-

ommendations listed in the project helps to establish confidence in the security of a web appli-

cation. The standard defines three security verification levels depending on the sensitivity of the

application and data:

• Level 1: All software.

• Level 2: Applications that contain sensitive data, which require protection.

• Level 3: Critical applications - applications that perform high value transactions, contain

sensitive data, or require the highest level of trust.

ESCUDO-CLOUD aims to deliver secure services to cloud customers and target use cases

are considered to deal with sensitive data. Therefore, guidance for application security should

be aligned with the recommendations for ASVS Level 2 and 3. Attackers here are considered to

be technically capable and focused on specific targets. ASVS recommends for Level 1 to conduct

automated penetration testing to provide as much coverage as possible for the application. At level

2, penetration testing activities will require more detail about the application, including access to

documentation and source code. Penetration testing alone is insufficient for Level 3 and should be

supported with additional activities such as system configuration review, malicious code review,

and threat modelling.

ASVS outlines a series of recommendations categorised across a number of domains includ-

ing Architecture, Authentication, Session Management, Malicious Controls, Business Logic, etc.

Each category identifies controls to implement secure applications according to each of the ASVS

levels (listed above). A sample of these controls relevant to the protection of application integrity

are listed in Table 3.1. Implementing these controls can increase the security of applications and

thereby reduce the risk of a vulnerability being exploited by an attacker.

Control ASVS

Level

ASVS

Level

ASVS

Level

1 2 3

Architecture, design and threat modelling

Verify that all application components are identified and are

known to be needed

y y y

Verify all security controls (including libraries that call external

security services) have a centralized implementation

y

Verify the application has a clear separation between the data

layer, controller layer and the display layer, such that security

decisions can be enforced on trusted systems

y y

Malicious controls

Verify all malicious activity is adequately sandboxed, container-

ized or isolated

y
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Verify that the application source code, and as many third party

libraries as possible, does not contain back doors, Easter eggs,

and logic flaws in authentication, access control, input validation,

and the business logic of high value transactions

y

Business logic

Verify the application will only process business logic flows in

sequential step order, with all steps being processed in realistic

human time, and not process out of order, skipped steps, process

steps from another user, or too quickly submitted transactions

y y

Files and resources

Verify that the web or application server is configured by default

to deny access to remote resources or systems outside the web or

application server

y y

Verify the application code does not execute uploaded data ob-

tained from untrusted sources

y y y

Configuration

All components should be up to date with proper security config-

uration(s) and version(s)

y y y

Verify application deployments are adequately sandboxed, con-

tainerized or isolated to delay and deter attackers from attacking

other applications

y y

Verify that the application build and deployment processes are

performed in a secure fashion

y y

Verify that all application components are signed y

Verify that third party components come from trusted repositories y

Table 3.1: Selection of Relevant ASVS Controls

3.2.2 File Integrity Monitoring

File Integrity Monitoring (FIM) is a service that validates the integrity of OS and application

files by verifying the current state of the files against a known trusted baseline measurement. To

reduce the computational overhead of comparing large files, the method typically uses the hash

or cryptographic checksum of the files for the comparison. The approach is useful for the de-

tection of changes to files, configuration values, credentials, security settings and policies and

data. The implementation of a FIM process is a requirement in multiple standards including

PCI-DSS [PCI16a], HIPAA [NIS08] and SANS Critical Security Controls. If not implemented

correctly and the output of the service monitored, an attacker could add, remove, or alter con-

figuration file contents, the OS, or application executables. If left undetected, the attacker could

bypass existing security controls giving them freedom to manipulate the application environment

to achieve their malicious objective.

The most basic method for comparing files is to first generate the hash of the file. Following

security best practices, the file and hash should never be transmitted together. In order to verify the

state of the files remained unchanged and have not been tampered with, the hash is recalculated
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and compared against the original baseline hash value. SHA-256 is the current recommended

cryptographic algorithm to use when generating hashes. OpenSSL, the popular open cryptogra-

phy and SSL/TLS toolkit provides an easy way to integrate library of cryptographic algorithms

including hash functions such as SHA-256 and MD5. OpenSSL provides a command line inter-

face to generate the hash of a file and has a C API for inclusion in application development. For

Java applications, the Java SE security platform provides a comprehensive set of cryptographic

features.

There are a number of commercial offerings available in the market to manage integrity mon-

itoring for files and OSs, including Intel Security Change Control6, Cloud Passage Halo7, Alien-

Vault PCI-DSS File Integrity Monitor8 and Tripwire File Integrity Manager9. These products aim

to address compliance issues within highly regulated industries moving their services to cloud in-

frastructures, continuously tracking changes to files, registry keys and security settings. Logging is

another key offered featured that can be important for detecting indicators that your systems have

been compromised. From an architectural perspective, these tools require a lightweight agent to

be installed on the host and managed from a central server.

3.3 Trusted Computing

This section introduces the concepts and technologies available to establish a root of trust that

provide the foundation for trust at higher levels (e.g., OS, application). These technologies are

essential in order to provide some assurance over the integrity of the execution environment. First,

vendor specific (VMWare) controls will be highlighted to illustrate the configuration options avail-

able to monitor virtual environments for unauthorised modifications.

To achieve better guarantees over confidentiality and integrity, the Trusted Computing Group

(TCG) 10 devised a set of hardware and software technologies to enable the realisation of a trusted

platform. The TCG concluded that software based security solutions are not enough to deploy a

truly trusted platform. This section will discuss some of the technologies available to establish

a trusted compute platform of cloud computing. A core technology for the implementation of a

trusted environment is the Trusted Platform Module (TPM) which will be discussed, along with

the various approaches for OS and application verification that have been built on the foundations

of TPM.

3.3.1 Virtual Machine Integrity

Despite the well documented benefits of cloud computing, there is a fundamental conflict between

the usage of public infrastructure to host data that is inherently private. Outsourcing compute and

storage resources introduces a layer of obfuscation between the data owner and the data itself.

Visibility and control over the data is lost. The first component to be addressed in providing

assurance of the environment is the virtual machine. Providing assurance at this point reduces the

possibility of software bugs, hardware failures, misconfiguration, or malicious attacks that affect

the security or behaviour of the environment. Without any transparency of how the VM or CSP

are configured and how operations are performed, the potential exists for a CSP to operate in a

6http://www.mcafee.com/us/products/change-control.aspx
7https://www.cloudpassage.com/solutions/compromise-detection/
8https://www.alienvault.com/solutions/pci-dss-file-integrity-monitoring
9http://www.tripwire.com/it-security-software/scm/file-integrity-monitoring/

10http://www.trustedcomputinggroup.org
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way that might affect the confidentiality or integrity of the data. For example, a cloud service may

be configured to provide an expected level of encryption for end user data, however, under periods

of heavy load the CSP may apply weaker security as a temporary measure to maintain the service.

Though data may only be protected with weaker mechanisms for a short period of time, it opens a

window for attackers to exploit.

One novel approach to verifying the computational integrity, based on the idea of uncheatable

distributed computing [GM01], is to perform the same computations on multiple CSPs and com-

pare the results. This approach however is more suitable for static processes that are applied to sets

of data and have easily measured results. The processes outlined by the use cases in ESCUDO-

CLOUD require user interaction which is harder to quantify. Additionally, the overhead incurred

by replicating the storage and access requests of large volumes of data would hinder the perfor-

mance of the service. This approach also potentially opens the attack surface which exposes the

end user data to further vulnerabilities.

A similar approach, in the context of Use Case 4, would be to split encrypted files on the client

side into multiple blocks and forward each piece to a separate CSP running the ESCUDO-CLOUD

service in parallel. In this way, no single CSP has the entire file and subsequently, in the event that

a key becomes compromised, does not have access to the protected data. Since data in this use

case is encrypted on the client side, the primary risk is to the key management server. Following

recommended security guidelines, this server should reside on a separate physical server to the

ESCUDO-CLOUD middleware.

Typically, hypervisor platforms such as VMware’s ESX/ESXi host platform provide mecha-

nisms for the verification of the VM integrity. To understand how VM file integrity is performed,

we first introduce in Table 3.2 the various files that make up the VM running on an ESX/ESXi

host.

File Description

VMX The primary configuration file of a

VM. Every aspect of your VM is de-

tailed in the VMX file, and any virtual

hardware assigned to your virtual ma-

chine is present here.

VMXF A supplemental configuration file for

virtual machines.

-flat.VMDK Stores the content of the VM’s actual

hard disk drives.

VMSD A centralized file for storing informa-

tion and metadata about a snapshots of

a VM.

NVRAM Contains the BIOS of the VM.

Table 3.2: Virtual Machine Files

These are critical files in the ESX/ESXi file system that should be monitored for changes, acci-

dental deletion or corruption. By creating a catalogue of file permissions and hashes representing
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file state, administrators can monitor and maintain these files to ensure they aren’t accessed or

modified without permission. VMware recommend to establish and maintain file system integrity
11. While most configuration files are controlled via an API, a set of specific configuration files,

used to govern host behaviour, are exposed with the vSphere HTTPS-based file transfer API. Tam-

pering with these files has the potential to enable unauthorized access to the host configuration and

VM. A number of methods are available (Managed Object Browser, vCLI, etc.) to monitor these

files and their contents, ensuring that they have not been maliciously or accidentally modified.

Similar monitoring mechanisms should be used according to the host platform recommendations.

Consideration should also be given to the installation of OSs and applications. It is recom-

mended to always check the hash after downloading an ISO, installation bundle or patch to ensure

the integrity and authenticity of the downloaded files. After downloading media, use the MD5

sum value to verify the integrity of the download. Compare the MD5 sum output with the value

posted on the distributors website. ESXi includes an additional layer of security, using digital

signatures to ensure the integrity and authenticity of modules, drivers and applications as they are

being loaded by the VMkernel. In this, ESXi can identify the providers of modules, drivers or

applications and whether they are VMwareCertified. VMwareCertified is one of the four vSphere

Installation Bundle (VIB) 12 acceptance levels supported by the ESXi image profiles 13.

1. VMwareCertified - VIBs created, tested and signed by VMware.

2. VMwareAccepted - VIBs created by a VMware partner but tested and signed by VMware.

3. PartnerSupported - VIBs created, tested and signed by a certified VMware partner.

4. CommunitySupported - VIBs that have not been tested by VMware or a VMware partner.

With the exception of CommunitySupported, VIBs meeting the other acceptance levels can be

installed on ESXi hosts. CommunitySupported VIBs are not supported and do not have a digital

signature.

3.3.2 Container Integrity

VMs are no longer the only popular virtualisation solution for the deployment of applications and

services. Container technologies have risen in prominence in recent years, in particular Docker,

as a way to deploy lightweight, flexible services on a virtualized infrastructure. The rapid uptake

in the technology left a number of security vulnerabilities exposed which have been quickly ad-

dressed in successive releases. The current version of Docker has well documented security best

practices and has addressed most significant security concerns.

In Docker, images containing OSs, applications and/or services, are stored in public (or pri-

vate) registries (a stateless, highly scalable server side application that stores and distributes

Docker images) and are pulled using Docker Engine. This model for image distribution raises

concerns over the integrity of the images and of the publisher of data received from the registry.

Digital signature verification is a relatively new feature, introduced via the Docker Content Trust

feature released in Docker 1.8.

11VMware vSphere 5.1 Documentation Center (http://pubs.vmware.com/vsphere-51/index.jsp)
12A collection of files packaged into a single archive to facilitate distribution
13VMware vSphere 6.0 Documentation Center (http://pubs.vmware.com/vsphere-60/index.jsp)
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Content Trust integrates the Update Framework (TUF)14 into Docker using Notary15. TUF

is a comprehensive, flexible framework that helps developers to secure new or existing software

update systems (software installation application running on a client) that might be vulnerable to

attack. Notary is a Docker project that builds on TUF and consists of a server and a client for

running trusted collections, making it easier to publish and verify content.

Content Trust builds trust into the system by allowing operations within a remote Docker

registry to enforce client-side signing and verification of the image. Docker also implements

digital signatures on data sent to/from the remote Docker registries, allowing the client to verify

the integrity of the image and verify its publisher. This establishes an environment in which

image publishers can sign their images and image consumers can verify those signatures. When

a publisher uploads an image to the registry, Docker Engine signs the image locally with the

publishers private key. The corresponding public key can then be used to verify the image when it

is requested to ensure that it has not been corrupted or tampered with.

Content Trust has two distinct keys, a Root key and a Tagging key that are generated the first

time a publisher pushes an image to the registry. The Root key is the root of trust for an image tag.

A user only has one Root key and it is stored offline (also known as the Offline key). There exists

a unique Tagging key for every repository. When a user first runs a pull command, they establish

trust to the repository using their Root key.

While this section and Section 3.3.1 have examined the vendor specific tools available through

VMware to manage VM integrity, the tools themselves are software applications that are poten-

tially vulnerable to compromise. Therefore it is necessary to drill deeper into the chain of trust

to establish a so called root of trust from which the integrity of each subsequent layer is based.

Section 3.3.3 will explore the concept of the Trusted Platform Module (TPM) that can be used to

provide such a root of trust.

3.3.3 Trusted Platform Module

One of the key standards developed by the TCG was the Trusted Platform Module (TPM) 16.

It is used to assist the remote attestation of the platform, that basically measures and record the

configuration information of the core components (BIOS, firmware, OS, software) of the platform.

This information is stored in the TPM which acts as a root of trust for the platform.

Its implementation is available as a chip that is now bundled with commodity hardware. It

provides cryptographic operations such as key generation, encryption/decryption, signing/verifica-

tion, hashing, random number generation and migration of key between TPMs. TPMs are resistant

to hardware and software attacks and contain an endorsement private key (EK) that uniquely iden-

tifies the TPM (and therefore the physical host). Manufacturers of TPMs sign the corresponding

public key and provide a certificate to validate the key and ensure its correctness. It also provides

secure storage for small amounts of information such as secret keys.

TPMs allow a system to gather and attest system state, store and generate cryptographic data

and prove platform identity. Remote attestation involves the creation of a hash key based on the

hardware and software configuration of the system. This hash value can be compared with a

measured hash value of the current state of the system to verify the integrity of the system includ-

ing the OS and applications. Figure 3.1 details the architecture of a TPM chip, identifying the

14https://theupdateframework.github.io
15https://github.com/docker/notary
16http://www.trustedcomputinggroup.org/tpm-main-specification/
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core cryptographic, storage and processing components which are sealed inside tamper resistant

packaging.

Figure 3.1: TPM Architecture

The design of the cryptographic processor implemented on the TPM focuses on delivering

specific cryptographic functions in order to provide a cost effective solution. For example, the

TPM does not provide an implementation for AES or any symmetric key algorithm, though the

TPM can store symmetric keys. Instead, only the asymmetric RSA algorithm is implemented

and is used for key generation, digital signatures and encryption/decryption of keys. The original

specification of TPM supported only SHA-1, though SHA-256 is now supported in the current

TPM standard. Finally, the TPM cryptographic processor contains a random number generator

(RNG) that is used to protect against replay attacks and to generate random keys.

Attestation identity keys (AIKs) created by the TPM are related to the EK. They are linked

to the local platform through a special certificate for the AIK that is created and signed by a CA.

The AIKs are used to digitally sign internal TPM data in order to provide attestation (provides

proof of data known by the TPM). The validity of the integrity measurements and the AIK can be

determined by a verifier. To provide attestation of the platform, a set of Platform Configuration

Registers (PCR) are digitally signed using the AIK.

The TPM contains several PCRs that can be used to securely store the digests of previously

recorded configurations that can be used to detect changes in the system. Products such as Mi-

crosoft BitLocker and Intel Security Endpoint Encryption use these registers to store configuration

and secret key material to enhance the security of their system integrity and disk encryption ser-

vices.

As it can be seen in Figure 3.1, the EK (introduced above) and Storage Root Key (SRK) are

stored in persistent memory. The SRK is the root key in the key hierarchy of the TPM. Every

key that is generated by the TPM has its private component protected with its parent key, creating

a chain to the SRK. Of the remaining components of the TPM: the program code contains the

firmware for the measuring platform components and is also known as the Core Root of Trust

for Measurement (CRTM); the program code is executed in the execution engine; and the Opt-In

component contains mechanisms for the management of the TPM modules state.

Trusted platforms leverage TPM capabilities to enable remote attestation. On booting the

host computes a measured list, ML, consisting of a sequence of hashes of the software involved

in the boot sequence (BIOS/UEFI, bootloader, software implementing the platform, etc.). This
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list of hashes is stored securely in the TPM. To attest to the platform, the user challenges the

platform running at the host with a nonce, n. The TPM then creates a message containing ML

and n, encrypted with it’s EK. This message is sent to the user who decrypts the message with the

corresponding public key, authenticating the host. Provided that the nonces match and the list of

hashes corresponds to a trusted configuration, the user can determine the trustworthiness of the

host. This provides a basis for determining the integrity of all software running on the platform,

from the hypervisor itself to all OSs and applications running inside VMs.

VMM

A VMM, also known as the hypervisor, is what enables multiple OSs to run on shared physical

resources. It is a software layer between the OS and the hardware, providing the abstraction that

aggregates physical resources (compute, storage, network) and presents virtual resources. The

VMM also provides isolation between VMs on the same host. Typically, during the boot process

of a VMM, an initial management VM is started that is necessary for starting further VMs. The

VMM guarantees its own integrity until the machine reboots. Therefore, a remote party can attest

to the platform running at the host to verify that a trusted VMM implementation is running, and

make sure that the computation running in the VM is secure.

While VMMs are mature technologies with multiple vendors that are capable of abstracting

physical resources into virtual resources, indistinguishable by the OS from the physical compo-

nents, TPMs provide a new challenge in this abstraction process. The root of the issue is the

introduction of new states of operation for the VM allowing the VMM to suspend the system and

resume it later. VM migration is also a challenge for integrating a TPM into a security solution, as

the TPM cannot physically move with the migrated VM. The following section will introduce the

concept of the virtual TPM (vTPM) and discuss how these challenges can be addressed to provide

TPM functionality to protect the integrity of images, OSs and applications.

A Trusted VMM (TVMM) builds on the properties of a traditional VMM to provide additional

capabilities that provide guarantees about the security and integrity of the VMs. VMMs already

provide isolation to applications running in different VMs which is essential to maintain confi-

dentiality and integrity. VMMs too are designed to be secure. Without the security challenges of

traditional OSs dealing with file systems, networks, etc. the VMM is only concerned with rela-

tively simple abstractions of resources. The proposed Terra TVMM builds on this foundation by

providing additional capabiliies:

• Root Secure: Ensures that even the CSP administrator cannot break the privacy and isolation

guarantees the TVMM provides to VMs.

• Attestation: Allows an application running on a VM to identify itself securely to a remote

party, establishing trust in the application for the remote party.

• Trusted Path: Provides a trusted path between the user to the VM/application so that each

endpoint is aware of who they are interacting with. Also ensures the confidentiality and

integrity of the communications between the end points.

vTPM

VMMs and hypervisors are naturally good at isolating workloads from each other because they

mediate all access to physical resources by VMs. A root of trust established in hardware (such as
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the TPM), provides resistance to software attacks and provides a mechanism to verify the integrity

of all software and VM images running on a platform. It is obvious however that TPMs were not

designed to be accessed by multiple systems at the same time. Virtualizing the TPM extends the

capabilities of the TPM, making them available to all VMs running on a platform. In this way, each

VM is provided with its own private TPM. As it is done with the abstraction and distribution of

physical resources (compute, storage, network) to support multiple VMs, a single hardware TPM

can be virtualized to provide multiple virtual TPM instances that can carry out the functionality of

the hardware TPM.

The implementation of a vTPM has a number of requirements as follows:

• Consistent usage model: A vTPM must provide the same usage model and TPM command

set to VMs as it is provided by a hardware TPM to physical machines

• vTPM - VM binding: The association between a VM and its vTPM must be maintained for

the duration of the VM lifecycle even if the VM is migrated to another host

• vTPM - TPM binding: The association between a vTPM and its TPM, on which its func-

tionality is derived, must be maintained

• It must be possible to distinguish between a vTPM and a TPM

A practical and secure implementation of a vTPM presents some challenges [PSD+06] though

implementations are available from different vendors. The key security concern when creating

an instance of a vTPM, is the establishment of a chain of trust from the physical TPM to each

vTPM. This is achieved via the management of signing keys and certificates. Despite the measures

enforced to extend the chain of trust, some applications and OSs relying on TPM functionality

should be made aware that they are using a vTPM so that the correct procedures and additional

steps can be implemented.

A secondary challenge with vTPMs relates to how to deal with the migration of vTPM in-

stances between hosts when the associated VM migrates. With the EK tightly coupled with to

the hardware configuration of the host, the migration of a VM would affect the ability to vali-

date digital signatures from the TPM as the underlying hardware and software is liable to change.

Therefore, it is critical that the trust established in the initial environment is carried over to the

vTPM environment. Secret key data stored and protected in the vTPM instance must be secured

in transit to an adequate level ensuring the persistence of security levels offered by the vTPM.

Most developments for vTPM implementations have been in the Xen platform [PSD+06]. Xen

provides documentation for the configuration of a platform that uses virtual TPMs to provide TPM

security functions to guests running on the platform 17. The document itself notes that there are

tradeoffs between flexibility and trust which must be considered when implementing a platform

containing vTPMs. Two examples are provided that present configurations for a Trusted Domain

0 (simple, flexible configuration) and for a domain builder with static vTPMs. The most notable

restriction of the latter example is that it is not possible to create additional vTPMs once the host is

booted. In addition, VMs with associated vTPMs cannot be rebooted without rebooting the entire

host.

IBM proposed two solutions for the implementation of a vTPM for Xen that met the secu-

rity and performance requirements for critical systems involving highly sensitive operations 18.

17http://xenbits.xen.org/docs/unstable/misc/vtpm-platforms.txtAccessedAugust2016
18http://researcher.watson.ibm.com/researcher/view_group.php?id=2850
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The first solution is to host the vTPM functionality on the IBM PCI-X Cryptographic Processor

(PCIXCC) which provides tamper resistance ensuring protection of private keys from attackers.

The architecture for this solution is presented in Figure 3.2 showing the PCIXCC subsystem run-

ning TPM functions for multiple vTPMs. A DOM-TPM introduced here acts as a back-end (TPM

BE) proxy for the PCIXCC vTPM, making TPM instances available to all other VMs, running a

TPM front-end (TPM FE), on the host.

Figure 3.2: vTPM implemented using PCIXCC

The other solution proposed by IBM is illustrated in Figure 3.3 and uses a software implemen-

tation of TPMs to provide TPM functionality. The DOM-TPM domain is again associated with

the physical TPM and is used to provide the software TPMs with their functionality. Research into

this approach for implementing a vTPM on Xen was extended, with detailed instructions on how

to setup a "mini-os vTPM subsystem" available at http://xenbits.xen.org/docs/unstable/

misc/vtpm.txt.

Figure 3.3: vTPM implemented using TPM on motherboard

These advances in finding practical and secure solutions to implement vTPMs open the pos-

sibility of providing cost effective TPM functionality to VMs which will enable users to attest

to the integrity of their VMs, images and applications before booting. This root of trust in their

environment will give cloud service users confidence in the state of their operations.

ESXi Integration

ESXi can use TXT/TPM to verify that the booted kernel and some of its respective loaded modules

have not been unexpectedly modified through an unauthorized update or some other malicious type

of change. This capability is enabled by default in ESXi and cannot be disabled. However, to take
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advantage of this security feature, it should be verified that TXT/TPM is also enabled in BIOS.

While an event is logged for TXT/TPM, there is no user interface to view the TXT/TPM

measurements that are made of the kernel and the respective loaded modules within the vSphere

GUI. 3rd party solutions can use an API call to verify that the kernel and those modules that are

inspected in the implementation of TXT/TPM by VMware have not been modified.

ESXi provides additional VMkernel protection with the following features:

• Memory Hardening: The ESXi kernel, user-mode applications, and executable components

such as drivers and libraries are located at random, non-predictable memory addresses.

Combined with the non-executable memory protections made available by microprocessors,

this provides protection that makes it difficult for malicious code to use memory exploits to

take advantage of vulnerabilities.

• Kernel Module Integrity: Digital signing ensures the integrity and authenticity of modules,

drivers and applications as they are loaded by the VMkernel. Module signing allows ESXi

to identify the providers of modules, drivers, or applications and whether they are VMware-

certified.

• TPM: Each time ESXi boots, it measures the VMkernel and a subset of the loaded modules

(VIBs) and stores the measurements into PCR 20 of the TPM. This feature is enabled by

default and cannot be disabled.

3.3.4 Trusted Cloud Computing Platform (TCCP)

The concept of a TCCP enables cloud IaaS providers (e.g., Amazon EC2) to provide a closed

environment guaranteeing the confidentiality and integrity of operations and data on VMs executed

inside it. Early implementations of a TCCP, such as Terra [GPC+03], enables cloud customers to

prevent the CSP from inspecting or interfering with VM operations. This system also provides

a remote attestation capability that allows the customer to determine, in advance, whether or not

the CSP can securely run their application. This approach was suitable for VMs running on a

single host. However, the concept of federated cloud and elastic cloud, along with the growth in

CSPs is moving computations, data and VMs beyond a single host environment into datacentres

comprising of thousands of hosts that may be spread across a wide geographical area. Compute

resources are allocated dynamically and customers have little visibility of how or where their data

is processed.

A TCCP proposed by Santos et. al. [SGR09] combines trusted computing and secure hyper-

visors to provide a secure platform in an environment where compute resources are outsourced to

multiple hosts, guaranteeing that no CSPs administrative staff can inspect or interfere with cus-

tomer operations or data. In addition, users of VMs in the environment can attest to the provider

and determine the security status of their VMs. An illustration of this TCCP design is provided in

Figure 3.4. The components of the TCCP include a set of trusted nodes (N), the trusted coordi-

nator (TC) and an untrusted cloud manager (CM). In this scenario, the VM is launched on N, and

the CM makes a set of services available to users. The TC, hosted and managed by a 3rd party

external trusted entity (ETE), is used to handle all attestations.

Each node, N, runs a trusted VMM (TVMM) and prevents privileged users from inspecting or

interfering with them. To provide maximum security and integrity, nodes use a TPM to support

a secure boot process to install the TVMM. The TC maintains a record of the nodes located in

the security perimeter and attests to the nodes platform that it is running a TVMM. In order to
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Figure 3.4: Trusted Cloud Computing Platform

ensure the integrity of VMs in the TCCP, the TC confines the execution of a VM to a trusted

node. In addition, during transit, the TC prevents the inspection or modification of the VM state.

The TCCP specifies several protocols to address the various states of the VM (launch, suspend,

resume, migrate) to ensure at all points that VMs are only run within the trusted perimeter and are

only accessible to authorised users.

Referring back to the typical insider attack description provided at the beginning of this chap-

ter, a malicious CSP staff member requires administrator permissions on the target VMs in order

to inspect or interfere with its applications. While each vendor will enforce different security

mechanisms to prevent such an intrusion, here we assume the attacker has the technical ability

and appropriate permissions to manipulate the physical host on which the VM is run and to re-

motely login to the target VM with root privileges. Under these conditions, the TCCP must be

able to restrict the movement of VM compute resources and restrict the capabilities of users with

root privileges to prevent them accessing memory. As the TC is hosted by the external ETE, CSP

administrative staff have no privileges inside the ETE and therefore cannot tamper with the TC. In

this way, even a skilled insider with root privileges will be unable to inspect or modify the state of

a VM running inside a trusted node. The only significant drawback to this approach, as with any

service relying on an independent 3rd party, is that the system depends on the TC and ETE to be

available for the service to run.

3.3.5 Direct Anonymous Attestation

Direct Anonymous Attestation [BCC04] was a scheme developed by the Trusted Computing

Group 19 as an approach to remotely authenticate a TPM (introduced in Section 3.3.3). DAA

involves several zero-knowledge proofs to guarantee the trustworthiness and privacy of an ap-

propriate platform. In the context of providing assurance over the state of an application and

VM, DAA provides a mechanism for one machine to attest its configuration state to another ma-

chine/user.

The use case addressed by DAA is as follows: Consider a TPM integrated into a host platform.

A user of the platform is requested by a verifier to provide assurance that the user is indeed using

a platform that contains a TPM. In other words, the verifier wants the TPM to authenticate itself.

There is an additional requirement that the user does not want to disclose their identity to the

verifier and therefore the verifier can only know that the user uses a TPM, but not which specific

one. In the event that the verifier gains knowledge of the users associated TPM, the verifier would

19http://www.trustedcomputinggroup.org
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be able to track all transactions with that user.

The solution devised by TCG assumes a 3rd party CA that has knowledge of the public com-

ponent of all TPM EKs. In order to authenticate itself to a verifier, a TPM generates a second

RSA key pair, the AIK. The public component of the AIK is signed using the EK and is sent to

the CA who checks its validity. The CA issues a certificate for the AIK which can be presented to

the verifier. In this way, a new AIK can be generated by the TPM for every transaction with the

verifier without exposing its EK to the verifier and therefore protecting the identity of the user.

Similar schemes using ECC in place of RSA have been developed [BCL08][Che09][CPS10],

taking advantage of shorter key and signature lengths and reduced computational load on the TPM.

A set of tools for DAA are available from IBM 20 which can be used to verify the DAA commands

on a TPM implementation. According to a 2014 ENISA report, adoption of this technology has

been limited.

SGX

SGX21 is a relatively new technology emerged from Intel that provides a set of new CPU instruc-

tions that can be used by applications to establish secure regions of code and data. The technology

aims to help application developers to protect code and data from being viewed or altered. The

central challenge is the execution of software on a remote computer that is owned and maintained

by an untrusted 3rd party such as a CSP. SGX considers the possibility that all privileged software

and users are potentially malicious and therefore need to be restricted from accessing sensitive op-

erations. Figure 3.5 illustrates the basic problem with trust in computing. Protected Mode (rings)

protects the OS from applications and applications from each as it is the situation with the appli-

cation on the left side of the figure. However, if a malicious application is loaded that exploits

a security vulnerability to gain full access privileges, it can then tamper with the OS and other

applications.

Figure 3.5: Trust in Computing

The core idea of SGX is the enclave, which are protected areas of execution. Application code

can be placed into an enclave using the APIs and tools provided by the SGX SDK. SGX builds

on the efforts towards establishing a trusted computing model and relies on software attestation

to prove to the user that they are communicating with a specific piece of software running on

20https://www.zurich.ibm.com/security/daa/IBM-DAA-TPM-TestSuite-Overview.html
21https://software.intel.com/en-us/sgx
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a secure container hosted by trusted hardware. Once the system state is attested, the user can

operate within the secure enclave which is protected from the OS upon which it is running. Figure

3.6 illustrates the process and architecture for executing sensitive operations of an application in a

trusted enclave.

At runtime, the SGX instructions build and execute the enclave in a special protected memory

region (available on Intel Skylake chips) that have restricted access points defined by the appli-

cation developer. The first step in the development of an application using SGX is to construct

trusted and untrusted parts of the application (1). The application runs and creates the enclave

which is placed in trusted memory (2). A trusted function Trusted() is called, at which point exe-

cution of the application is transferred to the enclave (3). While the enclave can see all data and

processes, no external process or user can gain access to this portion of memory (4), thus ensur-

ing the confidentiality and integrity of the operations. Finally, the trusted function returns to the

caller in the untrusted zone without leaking any enclave data from trusted memory (5) and the

application continues to its next operation (6).

Figure 3.6: Intel SGX

SGX opens up the potential for a wide array of use cases where sensitive operations and

operations on sensitive data can be isolated to trusted zones of memory, built upon a hardware root

of trust such as TPM. Potential use cases include:

• Guarding applications & data

• Hardening end-point security

• Protecting communications

• Protecting sensitive/confidential data

• Secure analytics workloads

• Secure IoT edge devices and cloud communications
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3.3.6 Summary

This chapter has covered a wide variety of techniques for ensuring the integrity of your physical

infrastructure, virtual environment, OS and applications. Taking this ground up approach to as-

suring the integrity of applications running in the Cloud (or indeed in any environment) provides

users with a traceable root of trust built into the hardware. The core trust anchors in the chain of

trust to the application include:

• Trusted Platform - Recent trends in technology, such as TPM and SGX, aiming to build

trust into the hardware have opened up opportunities for a host of new application and OS

security use cases. Prior to these advancements, mechanisms to protect software vulnerable

to attacks at the hardware, firmware or OS level. By ingraining trust into the hardware,

subsequent software layers can provide assurances over its state.

• Virtualisation - Virtualisation technologies such as virtual machines and, more recently,

containers have revolutionised the way organisations do business, providing a flexible, scal-

able and affordable platform (through Cloud computing) to acquire compute and storage

resources. However, virtualisation introduces another attack vector which needs to be ad-

dressed. Technology vendors (e.g., VMWare, Docker) provide comprehensive security

guides and recommendations for securing your environment and ensuring it is operating

in a known, stable state.

• Application - The final trust anchor is with the application itself. Techniques for analysing

and monitoring applications during their development and during runtime were presented.

A number of techniques and recommendations (including OWASP recommendations) for

securing web applications were also covered that help to reduce the risk of an application

becoming compromised.

In addition, processes for assuring the integrity of code and installation binaries during the

development cycle of an application were examined. Best practice guidelines for secure devel-

opment, in particular around the use of external libraries were outlined. Code signing, as well as

binary signing, were highlighted as an effective mechanism for distributing trusted content and

applications to end users.

The techniques and technologies explored in this Chapter provide a solid set of recommenda-

tions for the deployment of trusted applications in trusted environments. It is important for the four

use cases to give consideration to these recommendations in deployment of their architectures. In

addition, software libraries resulting from the other WP activities should take steps to integrate

code signing into their development processes and should make use of digital signatures to ensure

the validity of the resulting libraries and binaries.
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4. Applicability of Security Testing Techniques

to Use Cases

ESCUDO-CLOUD is predominantly driven by the enumeration of requirements from actual Use

Cases (UCs) with the resultant articulation of user data ownership scenarios. Thus, ESCUDO-

CLOUD explores security testing at the requirements level. Specifically, the security testing is

performed in order to mitigate the threats that can potentially violate the user’s data ownership

requirements of security, functionality and performance. The UCs also form the basis for testing

and validation. Each Use Case addresses a specific application scenario, which can be classified

as Infrastructure Provisioning, Cloud Storage, and Cloud Processing scenarios.

Use Case 1 (UC 1): This Use Case relates to cloud-storage platform, which supports server-side

encryption with flexible key-management solutions, to be used with OpenStack framework. This

facilitates user data security in the OpenStack framework

Use Case 2 (UC 2): This Use Case covers secure enterprise data management in the cloud, specif-

ically secure data sharing among the business parties. The goal of this Use Case is to provide

solutions that allow a data owner to share information without losing control over his data.

Use Case 3 (UC 3): This Use Case considers the application of data protection as a service via a

cloud service store that enables customers to protect their data stored on multi-cloud environments

including federated secure cloud storage.

Use Case 4 (UC 4): This Use Case considers cloud service brokers or intermediaries offering

a secure cloud data storage capability to their customers while possibly leveraging other cloud

providers for storing this data and ensuring that data is protected from such other cloud providers

and other users.

The process followed in this section takes the UCs defined in WP1 and the requirements

elicited in WP2 (W2.3) to suggest the security testing techniques (described in Chapter 2) applica-

ble to each of them. Figure 4.1 provides an overview of the process followed where requirements

elicited from the UCs (as in W2.3) are analyzed covering the aspects of:

• Applicability. Certain testing techniques are more suitable than others, depending on the

asset to protect (access control infrastructure, databases, etc). For instance, a perturbation

analysis would be suitable to check the level of protection of a key based access control, by

checking the correct behavior of the system when a malformed or malicious key is used.

• Threats Impact. This includes the evaluation of the impact of unfulfilling the requirement

over the elements of the system that are involved. For example, requirements related to

confidentiality are defined with the objective of protecting databases or servers. This would

involve the evaluation of potential threats (according to the software used in the server or

database) that would require to apply vulnerability testing techniques.
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• Availability of assets. The availability, or lack thereof, of certain parts of the system limits

the applicability of certain security testing techniques. For example, without access to the

code base it is not possible to perform white box testing while without the availability of

interfaces it is not possible to perform black box tests.

Figure 4.1: Process to evaluate requirements vs security testing techniques

The result of the analysis is a list of potential security testing techniques available to check the

fulfilment of the requirements for every UC. For each UC, we identify the security requirements

from multiple dimensions as depicted in Tables 4.1, 4.2, 4.3 and 4.4. These tables outline (a)

security properties (Confidentiality, Integrity and Availability); (b) sharing requirements; (c) ac-

cess requirements; (d) required security tests. For each UC requirement, we advocate the suitable

security testing technique(s) according to the security test techniques specified in Chapter 2.
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Requirement

Reference

Requirement

Description

Direct Assump-

tions

Indirect As-

sumptions

Violation

Likeli-

hood

(1/Low-

10/High)

Assumed Im-

pact

Threat

Severity

(1/Low-

10/High)

Advocated

Security

Testing

Technique

Comments on Applicability of Security Test-

ing

REQ-UC1-

IKM-1

CRUD op-

erations for

infrastructure

keys

Trusted adminis-

trator

Key existence 7 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

REQ-UC1-

IKM-1

CRUD op-

erations for

infrastructure

keys

Secure storage

for keys

3 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

REQ-UC1-

IKM-1

CRUD op-

erations for

infrastructure

keys

Key length suffi-

cient

3 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

REQ-UC1-

IKM-2

Policy-driven

and automated

infrastructure-

key management

Policy language

complete

Policy engine

functional,

automation

present

4 Policies leak in-

formation about

infrastructure

keys, expose

infrastructure

keys

8 -Fuzzing Malformed policies lead to system failures.

Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.
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REQ-UC1-

IKM-3

Support for

standard APIs

and protocols in

infrastructure-

key management

Correct protocol

implementation

5 Denial of ser-

vice, leakage of

infrastructure

information

10 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Mistakes in the security configuration of APIs

lead to security mistakes and information leak-

age. Scanning for common security mistakes

and testing the system computers, network de-

vices and applications to see whether they are

vulnerable to common attacks. Fuzz testing

is required to check the correct behaviour of

the systems processing the information received

through the APIs while testing is required to

evaluate the exposure to potential threats affect-

ing the servers providing the APIs.

REQ-UC1-

IKM-4

Support for

secure deletion

of cryptographic

material

Secure stor-

age for keys

6 Keys exposed,

data readable

10 -Vulnerability

assessment

-Penetration

testing

Secured storage keys is one of the main require-

ments for any system. Testing the system to

see whether the keys can be exposed due to the

deletion of cryptographic material is required.

REQ-UC1-

TKM-1

CRUD opera-

tions for tenant

keys

Trusted tenant

administrator

Key exis-

tence, trusted

infrastructure

administrator

7 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

REQ-UC1-

TKM-1

CRUD opera-

tions for tenant

keys

Secure storage

for keys

3 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

REQ-UC1-

TKM-1

CRUD opera-

tions for tenant

keys

Key length suffi-

cient

3 Confidentiality

violation for

tenant data

10 -Vulnerability

assessment

-Penetration

testing

Databases protecting tenant data are subject to

threats and vulnerabilities (depending on the

technology used). Tests related to the potential

vulnerabilities are required to ensure the confi-

dentiality of the data and the validity of the keys

used.

E
S

C
U

D
O

-C
L

O
U

D
D

eliv
erab

le
D

3
.2



7
1

REQ-UC1-

TKM-2

Policy-driven

and automated

tenant-key man-

agement

Policy language

complete

Policy engine

functional,

automation

present

4 Policies leak in-

formation about

tenant keys, ex-

pose tenant keys

8 -Fuzzing Malformed policies lead to system failures.

Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.

REQ-UC1-

TKM-3

Support for

standard APIs

and protocols

in tenant-key

management

Correct protocol

implementation

5 Denial of ser-

vice, leakage of

tenant informa-

tion

10 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Mistakes in the security configuration of APIs

lead to security mistakes and information leak-

age. Scanning for common security mistakes

and testing the system computers, network de-

vices and applications to see whether they are

vulnerable to common attacks. Fuzz testing

is required to check the correct behaviour of

the systems processing the information received

through the APIs while testing is required to

evaluate the exposure to potential threats affect-

ing the servers providing the APIs.

REQ-UC1-

TKM-4

Support for

secure deletion

of cryptographic

material

Secure stor-

age for keys

6 Keys exposed,

data readable

10 -Vulnerability

assessment

-Penetration

testing

Secured storage keys is one of the main require-

ments for any system. Testing the system to

see whether the keys can be exposed due to the

deletion of cryptographic material is required.

REQ-UC1-

SKM-1

Redundancy and

fault-tolerance in

key-management

systems

Redundancy and

fault-tolerance

2 Denial of service 6 -Vulnerability

assessment

-Fuzzing

Scanning for common security mistakes and

testing the system computers, network devices

and applications to see whether they are vulner-

able to common attacks.

REQ-UC1-

SKM-2

Scalable de-

sign of key-

management

system

System supports

actual number of

requests

2 Denial of service 6 -Vulnerability

assessment

-Fuzzing

Scanning for common security mistakes and

testing the system computers, network devices

and applications to see whether they are vulner-

able to common attacks.

REQ-UC1-

SKM-3

Key-

management

solutions support

weakly consis-

tent operations in

cloud platform

System correctly

uses active keys

4 Older keys ex-

posed

4 -Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the system

correctly uses active keys.
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REQ-UC1-

SKM-3

Key-

management

solutions support

weakly consis-

tent operations in

cloud platform

System correctly

uses active keys

4 Older keys used,

data inaccessible

7 -Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the system

correctly uses active keys.

Table 4.1: Use Case 1 requirements and their direct and indirect assumptions as well as the suggested security testing for each requirement.
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Requirement

Reference

Requirement

Description

Direct Assump-

tions

Indirect As-

sumptions

Violation

Likeli-

hood

(1/Low-

10/High)

Assumed Im-

pact

Threat

Severity

(1/Low-

10/High)

Advocated

Security

Testing

Technique

Comments on Applicability of Security Test-

ing

REQ-UC2-

AC1

Access Control

per Client

User Authentica-

tion

5 Basic assump-

tion violated

8 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the sys-

tem. Scanning for common security vulnerabil-

ities is required. Furthermore, testing the sys-

tem computers, network devices and applica-

tions to see whether unauthorized users can gain

access to the system.

REQ-UC2-

AC2

Access control

per group of

clients

User Groups ex-

ist

3 User inconve-

nience

1 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the sys-

tem. Scanning for common security vulnerabil-

ities is required. Furthermore, testing the sys-

tem computers, network devices and applica-

tions to see whether unauthorized users can gain

access to the system.

REQ-UC2-

AC3

Access control

per database cell

Cells are control-

lable

3 Exposure of

larger struc-

tures, e.g. tables

or columns,

potentially re-

sulting in partial

confidentiality

violation

4 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the

database cells. Scanning for common security

vulnerabilities is required. Furthermore, testing

the system to see whether unauthorized users

can gain access to the system.

REQ-UC2-

AC4

Access control

matrix model

Independent

of time and

workflow

4 User inconve-

nience

1 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the sys-

tem. Scanning for common security vulnerabil-

ities is required. Furthermore, testing the sys-

tem to see whether unauthorized users can gain

access to the system.
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REQ-UC2-

AC5

Access grant and

revoke by admin-

istrator

Administrator

for group main-

tenance available

3 User inconve-

nience

1 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the

system and only administrator can add/revoke

clients. Testing the system to see whether: (i)

unauthorized users can gain access to the sys-

tem and/or (ii) authorized users can act as ad-

ministrator.

REQ-UC2-

AC6

Access control

enforced by

client

Trusted Client 5 Confidentiality

violation for user

data

5 -Vulnerability

assessment

-Penetration

testing

Only authorized clients have access to the

system and only administrator can add/revoke

clients. Testing the system to see whether: (i)

unauthorized users can gain access to the sys-

tem and/or (ii) authorized users can act as ad-

ministrator.

REQ-UC2-

KM1

One key per

client

Key length suffi-

cient, keys are re-

newable

Secure Stor-

age for Key

2 Keys guessable,

global confiden-

tiality violation

10 -Penetration

testing

One unique key per client is required and the

keys should be renewable (fresh keys) and se-

curely stored. Testing the system to check

whether the keys can be exposed and if expired

keys can be used to gain access the system.

REQ-UC2-

KM2

Group key man-

agement

Group can se-

cure key, Key

is renewable,

key length is

sufficient

8 Confidentiality

violation for

group data

5 -Penetration

testing

Testing the system to check whether the keys

can be exposed or guessable and if the expired

keys can be used to gain access the system.

REQ-UC2-

KM3

Client key se-

curely stored at

client only

Secure Storage 2 Confidentiality

violation for user

data

5 -Penetration

testing

Testing the system to check if Client key stored

at the client can be accessible by unauthorized

entity.

REQ-UC2-

KM4

Group keys

derivable

Cryptographic

assumptions hold

3 Disaster, global

confidentiality

violation

10 -Penetration

testing

Testing the system to check whether the keys

are guessable or exposed.
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REQ-UC2-

EQ1

Encryption

schemes

Cryptographic

assumptions hold

Key is secret

(i.e. KM1)

3 Disaster, global

confidentiality

violation

10 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Fuzz testing is required to to check the correct

behaviour of the system when the encryption

schemes and cryptographic assumptions do not

hold. Furthermore, scanning and penetration

tests are required to ensure the confidentiality

of the data and the validity of the encryption

schemes and keys used.

REQ-UC2-

EQ2

Adjustable onion

encryption

Set of supported

queries is suffi-

cient, Scalability

is given

4 Performance

problems

2 -Vulnerability

assessment

-Penetration

testing

Scanning and penetration tests are required to

ensure the confidentiality of the data and the va-

lidity of the onion encryption scheme used.

REQ-UC2-

EQ3

Proxy re-

encryption,

Query rewriting,

Post-processing

Security enforce-

ment is possible

for Multi user en-

vironment

3 User has access

to data which

was supposed to

be revoked, re-

sulting in partial

confidentiality

violation

4 -Fuzzing Fuzz testing is required to to check the correct

behaviour of the system when an incorrect pol-

icy is processed.

REQ-UC2-

EQ4

Support for dif-

ferent keys

Set of supported

queries is suffi-

cient for Multi

user, Scalability

is given for Multi

user

5 Performance

problems

2 -Fuzzing Fuzz testing is required to to check the correct

behaviour of the system when different keys are

supported for Multi user.

Table 4.2: Use Case 2 requirements and their direct and indirect assumptions as well as the suggested security testing for each requirement.
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Requirement

Reference

Requirement

Description

Direct Assump-

tions

Indirect As-

sumptions

Violation

Likeli-

hood

(1/Low-

10/High)

Assumed Im-

pact

Threat

Severity

(1/Low-

10/High)

Advocated

Security

Testing

Technique

Comments on Applicability of Security Test-

ing

REQ-UC3-

KM-1

Each tenant

should be pro-

visioned with

an instance of a

key management

service from the

cloud service

store

Tenant has an

account on the

cloud service

store

Tenant has the

ability to sub-

scribe to the

DPaaS

1 Denial of Service 2 -Vulnerability

assessment

-Fuzzing

Scanning for vulnerabilities as well as Fuzz

testing is required to check the correct be-

haviour of the system (checking whether each

tenant is provisioned with an instance of a key

management). Furthermore, to verify whether

the system is vulnerable to common attacks,

such as enumeration of security related infor-

mation and denial of service attacks.

REQ-UC3-

KM-2

The tenants

should be able

to generate,

insert, retrieve

and remove keys

from their key

management

service

Tenant has ac-

cess to the KMS

KMS is oper-

ational

2 Denial of Service 2 -Fuzzing Fuzz testing is required to check the tenants

ability to generate, insert, retrieve and remove

keys from their key management service as

specified in the system behaviour.

REQ-UC3-

KM-3

The key man-

agement service

should be able

to offer differ-

ent key types

and generation

algorithms to

each tenant,

e.g., AES128,

AES256, 3DES

etc.

KMS is opera-

tional and avail-

able

1 Denial of Service 2 -Fuzzing

-Penetration

testing

Checking the type of encryption algorithm as

well as the key sizes is essential to protect the

system from different types of attacks. This

checking is performed using the penetration

testing, in order to test whether the system is

vulnerable to common attacks using each algo-

rithm. Fuzzing testing is used to check the cor-

rect behaviour of the system.
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REQ-UC3-

KM-4

Only the tenants

should be able to

create and man-

age the keys

Multi-tenant fea-

ture of the KMS

is operational

and available

2 Confidentiality

and Integrity

violation of keys

10 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Fuzz testing is required to check the tenants

ability to create and manage keys from their key

management service as specified in the system

behaviour. Furthermore, scanning and penetra-

tion testing are used to check if only the tenants

can create and manage keys or not.

REQ-UC3-

KM-5

The cloud ser-

vice providers

should have no

access or visibil-

ity of the tenants’

keys

KMS is hosted in

a trusted environ-

ment

KMS is in a

hardened OS

or Sandbox

1 Confidentiality

and Integrity

violation of keys

10 -Vulnerability

assessment

-Penetration

testing

Scanning and penetration testing are used to

check the provider’s ability to access the ten-

ants’ keys which leads to Confidentiality and

Integrity violation of the keys and the tenants’

data as well.

REQ-UC3-

KM-6

The tenants

should be able to

cache their keys

on trusted virtual

machines or

gateways in or-

der to outsource

or improve per-

formance of

the encryption

and decryption

process

KMS can gen-

erate cache-able

keys, unique to

particular hosts

2 Degradation

of encryption

and decryption

performance

1 -Fuzzing Tests are required to check the tenants ability

to cache their keys on trusted virtual machines

or gateways in order to outsource or improve

performance of the encryption and decryption

process as specified in the system behaviour.

REQ-UC3-

AC-1

Each tenant

should be provi-

sioned with an

instance of an

access control

service from the

cloud service

store

Tenant has an

account on the

cloud service

store

Tenant has the

ability to sub-

scribe to the

DPaaS

2 Denial of Service 2 -Fuzzing Tests are used to check that each tenant is pro-

visioned with an instance of an access control

service.
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REQ-UC3-

AC-2

The tenants

should be able to

create, delete and

modify access

control policies

from their in-

stance of the

access control

service

Tenant has ac-

cess to the AC

service

AC service is

operational

2 Denial of Service 2 -Fuzzing Tests are required to check the tenants ability

to cache their keys on trusted virtual machines

or gateways in order to outsource or improve

performance of the encryption and decryption

process as specified in the system behaviour.

REQ-UC3-

AC-3

The access

control service

should be able

to offer use of

different sys-

tem and data

attributes for the

construction of

a security rule,

e.g., file-system,

user, applica-

tion, and time

attributes.

AC service is

operational and

available

1 Denial of Service 2 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect access

control service is processed.

REQ-UC3-

AC-4

Only the tenants

should be able to

create and man-

age their access

control policies

Multi-tenant fea-

ture of the AC

service is opera-

tional and avail-

able

2 Confidentiality

and Integrity

violation of keys

10 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Fuzz testing is required to check the tenants

ability to create and manage keys from their

their access control policies and also to check

the correct behaviour of the system when an in-

correct policy is processed. Furthermore, scan-

ning and penetration testing are used to check

if only the tenants can create and manage their

access control policies or not.
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REQ-UC3-

AC-5

The cloud ser-

vice providers

should have no

access or visibil-

ity of the tenants’

access control

policies

AC service is

hosted in a

trusted environ-

ment

AC service is

in a hardened

OS or Sand-

box

2 Confidentiality

and Integrity

violation of keys

10 -Vulnerability

assessment

-Penetration

testing

Scanning and penetration testing are used to

check the provider’s ability to access the ten-

ants’ access control policies which leads to con-

fidentiality and Integrity violation of the keys

and the tenants’ data as well.

REQ-UC3-

AC-6

All data protec-

tion operations

should be gov-

erned by access

control policies

by either approv-

ing or denying

access to the

required keys

Key release is

tightly coupled

with AC service

5 Partial loss of

data access -

Denial of Service

8 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.

REQ-UC3-

AC-7

The access con-

trol service of

tenants should be

tightly coupled

with their key

management

service, such that

no key can be

utilised without

an approving

access control

policy

Key release is not

possible without

correct policy

5 Partial loss of

data access -

Denial of Service

8 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect access

control policy is processed.

REQ-UC3-

SO-1

Each tenant

should be pro-

visioned with

a cloud service

store account

Each tenant is

given a unique

identifier

2 Denial of Service 2 -Fuzzing Tests are required to check that each tenant is

provisioned with a cloud service store.
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REQ-UC3-

SO-2

The service store

should provide

the tenants with

access to the

storage services

of multiple cloud

service providers

Service store has

access profiles

of relevant cloud

service provider

3 Denial of Ser-

vice, Partial loss

of data access

3 -Fuzzing Tests are required to check that tenants ability

to access the storage services of multiple cloud

service providers as specified in the system be-

haviour.

REQ-UC3-

SO-3

The service store

should be able to

offer block stor-

age service to the

tenants

Service store is

able to provision

block storage

from relevant

cloud service

provider

3 Denial of Ser-

vice, Partial loss

of data access

3 -Fuzzing Tests are required to validate that the service

store is able to provision block storage from rel-

evant cloud service provider.

REQ-UC3-

SO-4

The service store

should be able to

offer object stor-

age service to the

tenants

Service store is

able to provision

object storage

buckets from

relevant cloud

service provider

3 Denial of Ser-

vice, Partial loss

of data access

3 -Fuzzing Tests are required to validate that the service

store is able to provision object storage buckets

from relevant cloud service provider.

REQ-UC3-

SO-5

The service store

should be able to

offer Big Data

storage service

(HDFS) to the

tenants

Service store is

able to provision

HDFS service

from relevant

cloud service

provider

3 Denial of Ser-

vice, Partial loss

of data access

3 -Fuzzing Tests are required to validate that the service

store is able to provision HDFS service from

relevant cloud service provider.

REQ-UC3-

SO-6

The tenants

should be able

to enable or

disable the use of

data protection

service on the

storage service

of their choice

Service store

can subscribe or

unsubscribe from

the DPaaS

1 Denial of Service 5 -Fuzzing Tests are required to check the tenants’ ability

to enable or disable the use of data protection

service on the storage service of their choice ac-

cording to the system behaviour.
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REQ-UC3-

SO-7

The service store

should be able to

offer key man-

agement as a ser-

vice to the ten-

ants

KMS has an op-

erational plug-in

for the Service

Store

4 Denial of Service 10 -Fuzzing Tests are required to validate that the service

store is able to offer key management as a ser-

vice to the tenants.

REQ-UC3-

SO-8

The service store

should be able to

offer access con-

trol as a service

to the tenants

AC Service has

an operational

plug-in for the

Service Store

4 Denial of Service 10 -Fuzzing Tests are required to validate that the service

store is able to offer access control as a ser-

vice to the tenants as specified in the system be-

haviour.

REQ-UC3-

DE-1

The core en-

cryption process

should only be

controlled and

managed by the

tenant

Only the tenant

can specify the

target storage

services where

data is stored

4 Confidentiality

and Integrity vi-

olation of tenant

data

10 -Vulnerability

scanning

-Penetration

testing

Scanning and penetration testing are used to

check if only the tenants can control and man-

age the keys to eliminate confidentiality and in-

tegrity violation of the tenant data.

REQ-UC3-

DE-2

The tenant

should be able

to deploy and

manage the core

encryption pro-

cess on trusted

virtual machines

or gateways as an

agent or plug-in

Service store has

configuration

management ca-

pability for VMs

and gateways

An agent or

plug-in for

target VMs or

gateways

4 Denial of Service 5 -Fuzzing

-Penetration

testing

Tests are required to validate that the tenant is

able to deploy and manage the core encryption

process on trusted virtual machines or gateways

as an agent or plug-in.

REQ-UC3-

DE-3

The core en-

cryption process

should be FIPS

140 compliant

DPaaS com-

ponents are

compliant to in-

dustry standards

3 Possible confi-

dentiality and

integrity viola-

tion due to weak

algorithms

7 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.
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REQ-UC3-

DE-4

The encryption

agent or plug-in

should be able

to access the

tenant’s key

management ser-

vice and access

control service

These services

are accessible

over an en-

crypted channel

using protocols

like SSL/TLS

4 Loss of confiden-

tiality, integrity

and availability

10 -Vulnerability

assessment

-Penetration

testing

Tests are required to check the accessibility of

the services from unauthorized agent or tenants.

REQ-UC3-

DE-5

The keys should

only be released

to the encryption

agent or plug-in

upon approval of

an access control

policy

Key release is not

possible without

correct policy

5 Partial loss of

data access -

Denial of Service

8 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.

Table 4.3: Use Case 3 requirements and their direct and indirect assumptions as well as the suggested security testing for each requirement.
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Requirement

Reference

Requirement

Description

Direct Assump-

tions

Indirect As-

sumptions

Violation

Likeli-

hood

(1/Low-

10/High)

Assumed Im-

pact

Threat

Severity

(1/Low-

10/High)

Advocated

Security

Testing

Technique

Comments on Applicability of Security Test-

ing

REQ-UC4-

AC1

Access Control

to the web portal

Proper user au-

thentication and

proper rights for

the logged user

Corporate

password

policy en-

forcement

5 Data confiden-

tiality is violated

8 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Authenticated users only should be allowed to

log to the system. Tests related to the poten-

tial vulnerabilities are required to ensure the

proper user authentication and proper rights for

the logged user.

REQ-UC4-

AC2

Save credentials

in the device

Credentials ac-

cessible only by

the owner

3 Data confiden-

tiality is violated

8 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the data is se-

curely stored and encrypted by the owner.

REQ-UC4-

AC3

Access control to

middleware

Proper user au-

thentication and

proper rights for

the logged user

Corporate

password

policy en-

forcement

5 Data confiden-

tiality is violated

8 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Authenticated users only should be allowed to

log to the system. Tests related to the poten-

tial vulnerabilities are required to ensure the

proper user authentication and proper rights for

the logged user.

REQ-UC4-

AC4

Access to shared

files only with

permission of the

file owner

Only exist a file

owner

3 Shared file confi-

dentiality is vio-

lated

4 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Tests related to the potential vulnerabilities are

required to ensure that access to shared files

only with permission of the file owner and thus

ensuring the confidentiality of the data.

REQ-UC4-

AC5

Access grant by

administrator for

locked users

Administrator is

the only entity

that can assign

permission

Malicious

user was

previously

blocked

3 User has access

to data which

was supposed to

be revoked, re-

sulting in partial

confidentiality

violation

7 -Fuzzing

-Penetration

testing

Scanning and penetration testing are used to

check whether non-permitted users have the

ability to access the data, which leads to con-

fidentiality and integrity violation of the data .
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REQ-UC4-

AC6

Limit of failed at-

tempts

There is a max-

imum number of

attempts

Key is suffi-

ciently safe

2 User data confi-

dentiality is vio-

lated

8 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the system

correctly uses active keys.

REQ-UC4-

SS1

Ensure Cloud ca-

pacity

Check available

capacity in the

Cloud before

store user data

3 Failure to upload

user data

6 -Fuzzing Testing the system to see whether the Cloud

capacity can be adapted to meet user require-

ments.

REQ-UC4-

SS2

Storage access

control through

middleware

Users cannot

access Cloud

storage by-

passing the

middleware

3 Total access to

storage systems

10 -Fuzzing

REQ-UC4-

SS3

Eastic Cloud ca-

pacity

Capacity can

be adapted

to meet user

requirements

There is suffi-

cient capacity

in the Cloud

2 User data cannot

be stored in the

Cloud

6 -Fuzzing Testing the system to see whether the Cloud

capacity can be adapted to meet user require-

ments.

REQ-UC4-

SS4

Comply data pro-

tection directive

(EU 95/46/EC)

There are enough

mechanisms

to protect user

personal data

2 Disclosure of

personal data

7 -Fuzzing Fuzz testing is required to check the correct be-

haviour of the system when an incorrect policy

is processed.

REQ-UC4-

SS5

Data recovery

control

Exist backup

mechanism in

the system

The backup

system is

resilient

2 Loss of user data 6 -Vulnerability

assessment

-Fuzzing

REQ-UC4-

DE1

Only data owner

can decrypt data

Data are en-

crypted in the

Cloud and user

possesses the

encryption key

3 User data con-

fidentiality viola-

tion

9 -Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the system

correctly uses active keys and only the owner

can decrypt data.

REQ-UC4-

DE2

Store data en-

crypted in the

Cloud

Client side en-

cryption

1 User data con-

fidentiality viola-

tion

6 -Vulnerability

assessment

-Penetration

testing

Testing the system to see whether the system

correctly uses active keys and data is securely

stored and encrypted in the Cloud.
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8
5

REQ-UC4-

DE3

Server synchro-

nization before

decryption

Prior stage

to user-data

interaction

1 User cannot ac-

cess its data

3 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Testing is performed to check whether files are

up to date and accessed by the user.

REQ-UC4-

DE4

Secured file

download

through the

web browser

Client side de-

cryption

1 Data confiden-

tiality, integrity

and availability

violation

8 -Fuzzing

-Vulnerability

assessment

-Penetration

testing

Testing is performed to check whether files can

be accessed during file downloading, which

leads to confidentiality and integrity violation

of the data.

Table 4.4: Use Case 4 requirements and their direct and indirect assumptions as well as the suggested security testing for each requirement.
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5. Conclusion

There is an increasing emphasis on security testing, along with a multitude of testing techniques

being proposed in the recent years. This growth is supported by the growing complexity of cloud

systems, by the corresponding increasing number of threats, by the increasing dependence on

cloud based services and by the increasing user-sensitive information that cloud services store and

process. However, several obstacles impede the adoption of security testing techniques in cloud

environments. In the pre-cloud times, services (and the data managed by them) were normally

under the control of their users. For example, it was common that companies managed their own

databases. More recently, companies are outsourcing the management of some of their traditional

services. While this reduces costs and increases performance it also entails the loss of control as

it is the cloud providers (and not customers) who are responsible for managing services and data.

This is even more important for multi-cloud services where different clouds, often from different

companies, collaborate in the cloud service provisioning.

In such new scenarios of cloud and multi-cloud services, security testing techniques become es-

sential to guarantee the security of customers services and data, in order to protect them from

potential threats. However, using these techniques becomes a challenge, precisely for the lack

of control on the services and data. The choice of what technique to use highly depends on the

characteristics of the cloud services (i.e., the resources available, the type of service provided). To

this end cloud service providers are often quite reluctant to open their systems to perform tests.

White-box testing techniques are only suitable when the source code is available. Black box tests

are truly viable in the cloud context as long as interfaces are normally available. However, in many

cases not even the interfaces are available and only application level testing can be performed.

In this deliverable we have addressed the problem of the applicability of security testing tech-

niques according to the availability of cloud resources. We have used this analysis to evaluate

the use cases elicited in ESCUDO-CLOUD and the requirements associated to them. Our secu-

rity testing methodology considers all UC requirements to extract a range of aspects therein - the

related resources, the associated security aspects (e.g., confidentiality or availability), the impact

in case of unfulfillment of requirements, etc. Subsequently, the range of available security testing

techniques are evaluated and mapped to these requirement to advocate the most appropriate testing

technique to use in each use case.
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