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Executive Summary

The possibility to share data with a community of users represents one of the reasons why users
increasingly move their data to the cloud. In fact, cloud providers offer services for easily sharing
data with others, without the need for the data owner to be online. The presence of multiple
users (possibly characterized by different access privileges) however leaves different issues open.
The solutions proposed in WP2 to protect data and access confidentiality and to guarantee their
integrity then need to be revised, to take into proper account the presence of multiple users, who
may be authorized to see only a portion of the data (and of query results). This deliverable aims at
providing techniques for guaranteeing confidentiality and integrity in a multi-user scenario, while
supporting efficient access to the data in the cloud.

The first goal of this deliverable is to guarantee access confidentiality in presence of multiple
users with different access privileges. To this aim, this deliverable presents an extension of the
shuffle index structure analyzed in WP2 for supporting access control enforcement. The proposed
approach is based on the adoption of selective encryption on the tuples stored in the leaves of the
shuffle index, and on the definition of two shuffle index structures (a primary and a secondary
index) to avoid the disclosure of sensitive information about accesses to both the cloud provider
and to authorized users.

The second goal of this deliverable is to realize secure execution of queries over sensitive,
access restricted data on an outsourced database. Therefore, this deliverable reports on the design
and evaluation of ENKI, a prototype for selective data sharing between multiple users realized
on SAP HANA. It applies a newly introduced encryption scheme to execute the relational opera-
tions count distinct, set difference, and join while protecting data confidentiality. The formulated
approach provides encryption based access control and techniques for query execution over en-
crypted, access restricted data on the database with only a few cases requiring computations on
the client.

A third goal of this document is to document the advances made for protecting consistency
and integrity of data stored in a cloud-object store. In previous work an abstract protocol has been
introduced that enables a group of mutually trusting clients to detect violations of data-integrity
and consistency by a malicious cloud storage service. This document reports on the refined design
and implementation of a prototype for this task, called VICOS. Furthermore, benchmark results
with an optimized implementation are shown.

The remainder of this deliverable is organized as follows. Chapter 1 illustrates a technique for
enforcing access control restrictions over the data stored in a shuffle index, by properly adapting
selective encryption. Chapter 2 presents a technique for query processing over encrypted data,
where users have different privileges over the accessed data. Chapter 3 describes a solution for
providing integrity and consistency guarantees for cloud object storage in a scenario where mul-
tiple users have possibly different views over the data stored in the cloud. Finally, Chapter 4
presents our conclusions.
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1. Access Control for the Shuffle Index

The shuffle index studied in WP2 provides an index-based hierarchical organization of the
data supporting efficient and effective access execution and provides access confidentiality with
limited (compared to classical solutions) performance overhead. The shuffle index, while support-
ing accesses by multiple users [DFP+13], assumes all users to be entitled to access the complete
data structure: data are encrypted with a key shared between the data owner and all users, and
all users can retrieve and decrypt these data, hence accessing the plaintext content. Encryption is
applied only to provide confidentiality (of content and access) with respect to the storing server.
However, in many situations access privileges may need to be granted selectively, that is, different
users should be authorized to view only a portion of the stored data. While existing solutions for
enforcing authorizations in data outsourcing context in presence of honest-but-curious providers
(e.g., selective encryption [DFJ+10]) have emerged, they cannot be simply applied in conjunction
with the shuffle index, given the specific characteristics of the index and its access execution, as
well as the need to ensure access confidentiality guarantees.

In this chapter, we provide an approach to support access control over the shuffle index to en-
sure that access to the data be granted only in respect of authorizations specified by the data owner.
Our approach leverages the availability of selective encryption to provide a self-enforcing layer of
protection over the data themselves. To allow for authorizations enforcement while maintaining
access confidentiality guarantees, our approach makes use of two shuffle indexes: a primary in-
dex, storing and providing access to selectively encrypted data, and a secondary index, enabling
enforcement of access control. We show that our proposal correctly enforces the access control
policy established by the data owner and has limited performance overhead.

The remainder of this chapter is organized as follows. Section 1.1 discusses the state of the art.
Section 1.2 presents the innovation provided by ESCUDO-CLOUD. Section 1.3 recalls the basic
concepts of the shuffle index. Section 1.4 illustrates how to represent and enforce access control,
and the organization of data and authorizations with the primary and secondary index. Section 1.5
illustrates how data access works to provide users the ability to access data while maintaining
access confidentiality with respect to the providers and ensuring that users be able to access all and
only those data for which they are authorized. Section 1.6 provides an analysis of our approach
with respect to correctness for access control enforcement as well as access confidentiality and
performance guarantees. Finally, Section 1.7 concludes the chapter.

1.1 State of the Art

The solutions proposed to protect data externally stored encrypt the data and support query evalu-
ation through indexes (i.e., metadata complementing the outsourced encrypted dataset) or specific
cryptographic techniques that support keyword-based searches (e.g., [HIML02, WCRL12]). These

13



14 Access Control for the Shuffle Index

approaches, however, do not guarantee the confidentiality of accesses and/or patterns of accesses
which, as illustrated in Deliverable D2.1, are equally important.

Solutions for protecting access and pattern confidentiality are based on Private Information
Retrieval (PIR) techniques or on dynamically allocated data structures, which change the phys-
ical location where data are stored at each access (e.g., [CMS99, DFP+11, DFP+13, DFP+15,
DFP+16b, LC04, OS07, SS13, SvS+13, WSC08]). PIR solutions are computationally expensive
and do not protect content confidentiality (e.g., [CMS99, OS07]). The Oblivious RAM (ORAM)
dynamic structure, which has been extensively studied, guarantees content, access, and pattern
confidentiality (e.g., [WSC08]). While preliminary proposals suffer from high computational and
communication overheads, recent attempts have been proposed to make ORAM more practical
(e.g., ObliviStore [SS13], Path ORAM [SvS+13], ). Besides ORAM structure, also tree-based
dynamically allocated structures, including the shuffle index studied in WP2 [DFP+15, PFL15],
have been studied that provide a good trade-off between privacy and performance (e.g., [DFP+11,
DFP+13, DFP+15, DFP+16b, LC04]). The shuffle index operates under the assumption that only
one user owns and accesses the data. The shuffle index can however support concurrent accesses
by different users [DFP+13]. Even if different users can access the shuffle index, a user can access
either all the tuples in the leaves of the shuffle index or none of them. In this deliverable, we
propose an approach to enable the data owner to enforce access control restrictions in such a way
that each user can access a subset of the tuples in the leaves of the index structure.

The problem of enforcing access control restrictions over outsourced data has been recently
considered in the literature. Existing solutions are based on the idea that the data themselves
should enforce the access control policy. Current approaches follow two different strategies: se-
lective encryption (e.g., [DFJ+10]), and attribute-based encryption (e.g., [GPSW06]). The solution
presented in this deliverable extends selective encryption proposals since we combine the shuffle
index with selective encryption to enable efficient access to the data through a tree-based index
(while not revealing to users index values they are not authorized to access [DFJ+11]). The devel-
oped approach has been designed in such a way that neither the index structure nor accesses over
it reveal to an observer (i.e., to the provider or to other users) sensitive data she cannot access and
target of searches.

1.2 ESCUDO-CLOUD Innovation

The innovation brought by the proposed approach is the ability to support selective sharing in
contexts where access confidentiality needs to be guaranteed. Indeed, existing approaches for
protecting access confidentiality do not support access control and consider a simplifying all-
or-nothing assumption, that is, they assume that users who can access the system can be given
complete visibility to the complete data collection. This assumption is clearly limiting in selective
sharing scenarios (focus of WP3) where users should be selectively authorized access only to
specific portions of data, as dictated by the access control policy set by the data owner. Our solution
provides selective sharing capability extending the shuffle index structure (developed in WP2 for
providing access confidentiality) with access control. The access control solution complementing
the shuffle index builds over the selective encryption approach previously developed in WP3. The
proposed approach has the following characteristics.

• It is based on the adoption of two shuffle index structures, complementing each other. The
primary index stores the data and provides access to the same in a selective way. The

ESCUDO-CLOUD Deliverable D3.3



Section 1.3: Shuffle Index 15

secondary index is instead necessary for enforcing access control restrictions over the data
stored in the primary index.

• The visit of the two (primary and secondary) index structures when searching for a target
value does not expose relationships among the primary and secondary index values. The
proposed approach has been designed considering the fact that accesses to the primary and
to the secondary index are related, and hence could possibly expose access and pattern
confidentiality.

• It correctly enforces the access control policy.

• It guarantees access and pattern confidentiality.

The work presented in this chapter has been published in [DFP+16a].

1.3 Shuffle Index

The shuffle index [DFP+15, PFL15] is a dynamically allocated data structure offering access and
pattern confidentiality while supporting efficient key-based data organization and retrieval. A data
collection organized in a shuffle index is a set of pairs 〈index_value, resource〉 with index_value a
candidate key for the collection (i.e., no two resources share the same value for index_value) used
for index definition, and resource the corresponding resource associated with the index value.
For simplicity, we assume the data collection to be a relational table R defined over a simplified
schema R(I,Resource), where I is the indexed attribute and Resource is the resource content.
At the abstract level, a shuffle index for R over I is an unchained B+-tree (i.e., there are no
links between the leaves) with fan-out F defined over attribute I, storing the tuples in R in its
leaves. Each node stores up to F−1 ordered values v1,v2, . . . ,vq, and has as many children as the
number of values stored plus one. The first child of a node is the root of the subtree including
all values v < v1; its last child is the root of the subtree including all values v ≥ vq; its i-th child
(i = 2, . . . ,q) is the root of the subtree including all values vi−1 ≤ v < vi. Actual resources are
stored in the leaves of the tree in association with their index value. At the logical level, each node
is associated with a logical identifier. Logical identifiers are used in internal nodes as pointers to
their children and do not reflect the order relationship among the values stored in the nodes. At
the physical level, each node is stored in encrypted form in a physical block and logical identifiers
are translated into physical addresses at the storing server. For the sake of simplicity, we assume
that the physical address of a block storing a node corresponds to the logical identifier of the node
itself. The encrypted node is obtained by encrypting the concatenation of the node identifier, its
content (values and pointers to children or resources), and a randomly generated nonce (salt).
Formally, block b storing node n is defined as E(k, salt||id||n), where E is a symmetric encryption
function with key k and id is the identifier of node n. Encryption protects the confidentiality
of nodes content and the structure of the tree, as well as the integrity of each node and of the
structure overall. Figure 1.1(c-e) illustrates an example the abstract (c), logical (d), and physical
(e) level, respectively, of a shuffle index storing the 19 tuples in Figure 1.1(a), indexed according
to the values of attribute I. Actual tuples are stored in the leaves of the index structure, where, for
simplicity, we however report only the index values.

To retrieve the tuple with a given index value in the shuffle index, the tree is traversed from
the root following the pointers to the children until a leaf is reached. Since the shuffle index is

ESCUDO-CLOUD Deliverable D3.3



16 Access Control for the Shuffle Index

I Resource
1 A Aresource
2 B Bresource
3 C Cresource
4 D Dresource
5 F Fresource
6 G Gresource
7 H Hresource
8 I Iresource
9 J Jresource

10 L Lresource
11 M Mresource
12 N Nresource
13 O Oresource
14 P Presource
15 Q Qresource
16 R Rresource
17 S Sresource
18 T Tresource
19 U Uresource

(a)

Search
target: C
repeated: S
cover: J

(b)

ABSTRACT INDEX

(c)
LOGICAL INDEX

(d)
PHYSICAL INDEX

(e)

Figure 1.1: An example of a relation (a), an access over it (b), and of abstract (c), logical (d) and
physical (e) shuffle index

stored at the server in encrypted form, such a process is iterative, with the client retrieving from
the server (and decrypting) one node at a time to determine the child node to be read at the next
level. To protect access and pattern confidentiality, in addition to storing nodes in encrypted form
at the server, the shuffle index uses the following three techniques in access execution.

• Cover searches: in addition to the target value, additional values, called covers, are re-
quested. Covers, chosen in such a way to be indistinguishable from the target and to operate
on disjoint paths in the tree (also disjoint from the path of the target), provide uncertainty
to the server on the actual target. If num_cover searches are used, the server will observe
access to num_cover+1 distinct paths and corresponding leaf blocks, any of which could be
the actual target.

• Repeated access: to avoid the server learning when two accesses refer to the same target
since they would have a path in common, the shuffle index always produces such an ob-
servable by choosing, as one of the covers for an access, one of the values of the access just
before it (if the current access is for the same target as the previous access, a new cover is
used). In this way, the server always observes a repeated access, regardless of whether the
two accesses refer to the same or to a different target.

ESCUDO-CLOUD Deliverable D3.3



Section 1.4: Primary and Secondary Indexes for Access Control 17

• Shuffling: at every access, the nodes involved in the access are shuffled (i.e., allocated to dif-
ferent logical identifiers and corresponding physical blocks), re-encrypted (with a different
random salt and including the new identifier of the block) and re-stored at the server. Shuf-
fling provides dynamic reallocation of all the accessed nodes, thus destroying the otherwise
static correspondence between physical blocks and their content. This prevents the server
from accumulating knowledge on the data allocation as at any access such an allocation is
refreshed.

To illustrate, consider the shuffle index in Figure 1.1(c-e) and the search in Figure 1.1(b) for the
tuple with index value C, assuming S as repeated access and J as fresh cover. The access entails
reading (i.e., retrieving from the server) the nodes annotated in the figure, with the server only
observing downloads of the corresponding encrypted blocks in Figure 1.1(e) but not able to learn
anything on the block content or on the roles (target, repeated, cover) of the blocks. Shuffling
could produce, after the access, a re-allocation of the accessed nodes. For instance, 205→204,
204→207, 207→205 (where X→Y denotes the fact that the content of node X is moved to Y).

1.4 Primary and Secondary Indexes for Access Control

Providing access control means enabling data owners to regulate access to their data and selec-
tively authorize different users with different views over the data. Figure 1.2(a) illustrates possible
authorizations on the data of Figure 1.1(a), considering three users (u1, u2, u3). The figure reports,
for each tuple r in the dataset, the corresponding acl(r), that is the set of users authorized to access
it. (Note that authorizations do not explicitly report the access privileges, which is considered to
be ‘read’, since we assume access by users to be read-only, with write operations reserved to the
owner.) When clear from the context, with a slight abuse of notation, in the following we will
denote the access control list of a tuple r as either acl(r) or acl(r[I]), with r[I] its index value. For
instance, acl(A)={u1,u2,u3}, while acl(B)={u1,u2}.

Before diving into our solution, we note that there could be two natural and straightforward
approaches to enforce authorizations in the shuffle index, each of which would, however, have
limitations and drawbacks. A first natural approach would be to simply associate a key ki with
each user ui and produce different replicas of the data. Each tuple would be replicated as many
times as the number of users authorized to access it. Each copy would be encrypted with the key
of the user for which it is produced. For instance, with reference to Figure 1.2(a) three copies
would be created for index value A and the corresponding resource Aresource, encrypted with
keys k1, k2, and k3, respectively. Different shuffle indexes would then be defined, one for each
user, organizing and supporting accesses to the tuples that the user is authorized to access. Such
an approach, besides bearing obvious data management problems (as replicas would need to be
maintained consistent) would affect the protection offered by the shuffle index. In fact, it would
organize each shuffle index only on a limited portion of the data (for each user, only those tuples
that she can access, that is, less than half of the original tuples for each user in our example) with
consequent limitations in the choice of covers. An alternative solution could then be to maintain
the shuffle index as a single structure (so to build it on the complete dataset), and avoid replicas
by producing only one encrypted copy for each tuple. Replicas can be avoided by considering
different encryption keys not only for individual users but also for user sets (i.e., acls), with a
user ui knowing her encryption key ki as well as those of the acls in which she is included. Each
resource would then be encrypted only once and the encryption key with which it is encrypted
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ORIGINAL RELATION PRIMARY INDEX SECONDARY INDEX

I Resource ACL
1 A Aresource . . . u1 u2 u3

2 B Bresource . . . u1 u2

3 C Cresource . . . u1 u2

4 D Dresource . . . u2 u3

5 F Fresource . . . u2 u3

6 G Gresource . . . u1 u3

7 H Hresource . . . u1 u3

8 I Iresource . . . u1

9 J Jresource . . . u1

10 L Lresource . . . u1

11 M Mresource . . . u1

12 N Nresource . . . u2

13 O Oresource . . . u2

14 P Presource . . . u2

15 Q Qresource . . . u2

16 R Rresource . . . u3

17 S Sresource . . . u3

18 T Tresource . . . u3

19 U Uresource . . . u3

I Resource
12 ι(A) 〈`123, E(k123, Aresource)〉
17 ι(B) 〈`12, E(k12, Bresource)〉

4 ι(C) 〈`12, E(k12, Cresource)〉
3 ι(D) 〈`23, E(k23, Dresource)〉
7 ι(F) 〈`23, E(k23, Fresource)〉
9 ι(G) 〈`13, E(k13, Gresource)〉

10 ι(H) 〈`13, E(k13, Hresource)〉
8 ι(I) 〈`1, E(k1, Iresource)〉
6 ι(J) 〈`1, E(k1, Jresource)〉

11 ι(L) 〈`1, E(k1, Lresource)〉
2 ι(M) 〈`1, E(k1, Mresource)〉

14 ι(N) 〈`2, E(k2, Nresource)〉
5 ι(O) 〈`2, E(k2, Oresource)〉

18 ι(P) 〈`2, E(k2, Presource)〉
16 ι(Q) 〈`2, E(k2, Qresource)〉
15 ι(R) 〈`3, E(k3, Rresource)〉
19 ι(S) 〈`3, E(k3, Sresource)〉

1 ι(T) 〈`3, E(k3, Tresource)〉
13 ι(U) 〈`3, E(k3, Uresource)〉

I Resource
10 ι1(A) E(k1, ι(A))
18 ι2(A) E(k2, ι(A))
22 ι3(A) E(k3, ι(A))

5 ι1(B) E(k1, ι(B))
6 ι2(B) E(k2, ι(B))
9 ι1(C) E(k1, ι(C))

25 ι2(C) E(k2, ι(C))
27 ι2(D) E(k2, ι(D))

4 ι3(D) E(k3, ι(D))
19 ι2(F) E(k2, ι(F))

3 ι3(F) E(k3, ι(F))
11 ι1(G) E(k1, ι(G))

7 ι3(G) E(k3, ι(G))
20 ι1(H) E(k1, ι(H))
24 ι3(H) E(k3, ι(H))
15 ι1(I) E(k1, ι(I))
12 ι1(J) E(k1, ι(J))

8 ι1(L) E(k1, ι(L))
1 ι1(M) E(k1, ι(M))

14 ι2(N) E(k2, ι(N))
23 ι2(O) E(k2, ι(O))
26 ι2(P) E(k2, ι(P))

2 ι2(Q) E(k2, ι(Q))
13 ι3(R) E(k3, ι(R))
16 ι3(S) E(k3, ι(S))
21 ι3(T) E(k3, ι(T))
17 ι3(U) E(k3, ι(U))

(a) (b) (c)

Figure 1.2: Relation of Figure 1.1(a) with acls associated with its resources (a), relation for the
primary index (b), relation for the secondary index (c)

known only to its authorized users. For instance, with reference to Figure 1.2(a), Aresource
would be encrypted with key k123 known to all users while Bresource would be encrypted with
key k12 known to u1 and u2 only. While such selective encryption correctly enforces access to
the encrypted resources, it leaves the problem of ensuring protection (and controlling the possible
exposure) of the index values with which the shuffle index is organized. As a matter of fact, on
one hand, leaving such index values accessible to all users for traversing the tree would disclose
to every user the complete set of index values, even those of the tuples she is not authorized to
access. On the other hand, such index values cannot be encrypted with the same encryption key
used for the corresponding resources, as otherwise the ability to traverse the tree by users would
be affected.

Starting from these observations, we build our approach essentially providing selective en-
cryption while protecting index values themselves against unauthorized users without affecting
their ability to retrieve those tuples they are authorized to access. Our approach is based on the
definition of two different indexes. A primary index, defined over an encoded version of the orig-
inal index values, and a secondary index, providing a mapping enabling users to retrieve the value
to look for in the primary index. Both indexes make use of an encoding of the values to be indexed
to make them intelligible only to authorized users. We then start by defining an encoding function
as follows.

Definition 1.4.1 (Encoding Function). Let R(I,Resource) be a relation with I defined over domain
D . A function ι : D → E is an encoding function for I iff ι is: i) non-invertible; ii) non order-
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preserving; iii) injective.

Intuitively, an encoding function maps the domain of index values I onto another domain of
values E , avoiding collisions (i.e., ∀vx,vy ∈I with vx 6= vy, ι(vx)6=ι(vy)), and in such a way that the
original ordering among values is destroyed. Also, non-invertibility ensures the impossibility of
deriving the inverse function (from encoded to original values). For instance, an encoding function
can be realized as a keyed cryptographic hash function operating on the domain of attribute I.

The second building block of our solution is the application of selective encryption, namely
encryption of each resource with a key known only to authorized users. To apply selective encryp-
tion, we then define a key set for the encryption policy as follows.

Definition 1.4.2 (Encryption Policy Keys). Let R(I,Resource) be a relation, U be a set of users,
and, ∀r∈R, acl(r)⊆U be the acl of r. The set K of encryption policy keys for R is a set
K ={ki | ui ∈U } ∪ {ki1,...,in | ∃r ∈R,{ui1 , . . . ,uin}= acl(r)} of encryption keys. Each key kX∈K
has a public label `X . Each user ui∈U knows the set K i={ki}∪{kX | kX ∈K ∧ i ∈ X} of keys.

Definition 1.4.2 defines all the keys needed (and the knowledge of users on them) to apply
selective encryption, meaning to encrypt the data selectively so that only authorized users can
access them while optimizing key management and avoiding data replication. The public label
associated with a key allows referring to the key without disclosing its value. Note that knowledge
by a user of all the keys of the access control lists to which she belongs does not require direct
distribution of the keys to the user, since hierarchical organization of keys and use of publicly
available tokens enabling key derivation can provide such a knowledge to the user [DFJ+10].

We are now ready to define the first index used by our approach. This first index, called
primary, is the one storing the actual data on which accesses should operate (i.e., tuples in R). To
provide selective access as well as enable all users to traverse the index without leaking to them
information (index values and resources) they are not authorized to access, the index combines
value encoding and selective encryption. Formally, the primary index is defined as follows.

Definition 1.4.3 (Primary Index – Data). Let R(I,Resource) be a relation, I be the indexing at-
tribute, ι be an encoding function for I computable only by the data owner, and K be the set
of encryption policy keys for R. A primary index for R over I is a shuffle index over relation
P(I,Resource) having a tuple p for each tuple r∈R such that p[I] = ι(r[I]) and p[Resource]=
〈`i1,...,in ,E(ki1,...,in ,r[Resource])〉, with E a symmetric encryption function, acl(r) = {ui1 , . . . ,uin},
and ki1,...,in ∈K

The primary index stores original data in encrypted form, encrypting each tuple with the key
corresponding to its acl (i.e., known only to the users authorized to read the tuple). The inclusion
in r[Resource] of the label enables authorized users to know the key to be used for the decryption
of the resource. The primary index is built on encoded values computable only by the data owner.
For instance, the encoding function can be implemented through a cryptographic hash function,
using a key ko known only to the data owner (i.e., the encoded value ι(v) for a tuple r with
index value v can be computed as hash(v,ko)). Note that, although each resource singularly taken
appears encrypted in the leaves of the primary index, all the nodes are (also) encrypted with a key
k known to every user in the system. This second encryption layer is necessary to enable shuffling
(Section 1.3).

Building the index on the encoded values provides protection of the original index values, and
their order relationship, against users and storing server that observe the index on the encoded val-
ues. In fact, the encoding is non-invertible (hence the encoded values do not leak any information
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Figure 1.3: Primary shuffle index for the relation in Figure 1.2(b)

on the original values), and destroys the original ordering (hence the order relationship between
encoded value does not leak anything on the order relationship among the original values).

Figure 1.2(b) illustrates a primary index P for our running example. The ordering among the
encoded values is reported with numbers on the left of the table. Figure 1.3 illustrates the tree
structure for such primary index. Note how the different order among the values to be indexed
causes a different content within the leaves and a different ordering among them, with respect to
the shuffle index in Figure 1.1(a) built over the original (non-encoded) index values.

While the index on the encoded values provides the ability to traverse the tree to look for
the resource associated with an encoded value, to retrieve a given resource (i.e., the resource
corresponding to an original value for the indexing attribute) one would need to know the encoding
of such value. For instance, resource Aresource would be stored in association with index value
ι(A). The encoding (i.e., the fact that ι(A) corresponds to A) is however known only to the data
owner.

The second index of our approach allows the data owner to selectively disclose to users the
mapping of encoding ι , releasing to every user the mapping for (all and only) those values she is
authorized to access. Such knowledge is provided to each user ui encrypted with the user key ki

(so to make it non intelligible to other users and to the server) and is indexed with a user-based
encoding, so to provide a distinct mapping for every user ui, which can be computed only by ui.
The second index of our approach is therefore a secondary index providing user-based mapping
as follows.

Definition 1.4.4 (Secondary Index – User-based Mapping). Let R(I,Resource) be a relation, I be
the indexing attribute, P be a primary index for R over I with encoding function ι , U be a set
of users, {ιi | ui ∈U } be a set of encoding functions for I such that ιi is computable only by user
ui and by the data owner, and K be the set of encryption policy keys for R. A secondary index
for R and P is a shuffle index over relation S (I,Resource) having a tuple s for each pair 〈r,ui〉,
r∈R and ui∈acl(r), such that s[I]= ιi(r[I]) and s[Resource] = E(ki, ι(r[I])), with E a symmetric
encryption function and ki ∈K .

For instance, the encoding function of each user ui can be implemented as a cryptographic hash
function, using a key ki known to user ui only (i.e., ιi(v)=hash(v,ki)). Figure 1.2(c) illustrates a
secondary index for our running example. Again, the number on the left of the table is the ordering
among the index values of the secondary index. Notice how, once again, the encoding does not
convey any information on the ordering of the original index values. Note that the secondary
index has a larger number of tuples than the original index, since the encoding of an original
index value is encrypted as many times as the number of users who can access it. For instance,
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Figure 1.4: Secondary shuffle index for the relation in Figure 1.2(c)

in our example, there are three instances of ι(A). Figure 1.4 illustrates the tree structure for the
index in Figure 1.2(c). We note however that the secondary index is very slim as the resources
are simply the encryption, with the key of a user, of the owner encoding. While in our examples,
for simplicity, we maintain the same topology, the structure of the secondary index is independent
from the structure of the primary index, meaning that they may have different fan-out and height.

Note that the property of the encoding function of destroying the ordering among original
index values is particularly important to guarantee protection. In fact, users will know all encoded
values computed by the data owner (i.e., the co-domain of function ι), but will know the actual
mapping (i.e., the actual value v corresponding to ι(v)) only for the values they are allowed to
access. Figure 1.5(a-b) illustrates a possible logical organization for the primary and secondary
index of our example, where for simplicity of illustration we assume the logical organization to
reflect (at this initial time) the abstract organization of the tree. We distinguish blocks of the
primary and secondary index by adding prefix P and S, respectively, to their identifiers. The
coloring represents the visibility of users u1. Encoded values with grey background are those
which remain non intelligible to u1 as they are encoded with the mapping of other users (for the
secondary index) or their owner encoding is not disclosed to u1 (for the primary index).

Since encoding does not preserve ordering, encoded values non intelligible to a user will re-
main protected, as no inference can be drawn on them from their presence or order relationships
with respect to other encoded values which are intelligible to her. For instance, consider the
primary index in Figure 1.5(b). User u1, being authorized for B will know that ι(B) is the cor-
responding encoding. At the same time, however, ι(Q), stored in the same node, remains non
intelligible to her. User u1 simply observes the presence of another encoded value but will be able
to infer neither its corresponding original value nor its order relationship with respect to B.

1.5 Access Execution

We now illustrate how the two indexes described in the previous section are jointly used for ac-
cessing a tuple of interest. To retrieve a tuple in R with value v for I, a user ui would need to
perform the following steps:

1. compute the user-based mapping ιi(v)=hash(v,ki);

2. search ιi(v) in the secondary index S , retrieving the corresponding encoded value ι(v);
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SECONDARY INDEX

(a)

PRIMARY INDEX

(b)

SECONDARY INDEX

(c)

PRIMARY INDEX

(d)

Figure 1.5: Secondary and primary index before (a-b) and after (c-d) the access by u1 over
C. Secondary index: i) cover: ι2(F), ii) repeated access: [S001,S101,S202], iii) shuffling:
S101→S102, S102→S103, S103→S101, S202→S205, S205→S209, S209→S202. Primary
index: i) cover: ι(Q), ii) repeated access: [P001,P102,P205], iii) shuffling: P101→P103,
P102→P101, P103→P102, P202→P208, P205→P202, P208→P205. The gray background de-
notes encoded values non intelligible to u1
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3. search ι(v) in the primary index P , retrieving the corresponding target tuple.

As an example, consider the indexes in Figure 1.5(a-b) and suppose that user u1 searches
index value C. User u1 computes ι1(C)=hash(C,k1) and then searches it in the secondary index in
Figure 1.5(a). The search returns block S205, from which ι(C) is retrieved. Hence, u1 searches
ι(C) in the primary index in Figure 1.5(b). The search returns block P202, from which u1 can
retrieve resource Cresource.

Note that the steps above assume the searched value to be present in the index. If the value is
not present in the secondary index, its user-based mapping does not appear in the block returned
by step 2. In such a case, the process will continue providing a random value for the search in step
3, so to provide to the server the same observation as a successful search. Note also that the search
for a value that is present in the dataset but for which the searching user is not authorized, present
to the searching user the same observable as the search for a missing value (hence not disclosing
anything to the user about values she is not authorized to access).

The steps above simply illustrate how to retrieve a target value. However, both the primary
and the secondary index are shuffle indexes and accesses should not simply aim at the target
value but should also be protected with the techniques (cover, repeated searches, and shuffling)
devoted to protect access confidentiality. The application of these techniques on the two indexes is
completely independent, meaning that the choice of covers, repeated searches, and shuffling can
be completely independent in the two indexes. The only dependency among the two indexes is
the fact that - clearly - the target to be searched in the primary index is the tuple retrieved by the
search on the secondary index.

Covers, repeated searches, and shuffling on the primary and secondary index work essentially
in the same way as they work in the shuffle index in absence of authorizations (Section 1.3).
However, the nature of these indexes requires minor adjustments in their application, as follows.

• Cover searches. For both the secondary and the primary indexes, cover searches should
be chosen from the set of encoded values, in contrast to the set of original values. The
reason for this is that every user has limited knowledge on the set of original index values
while she can have complete knowledge of the encoded values in the indexes (i.e., of the
complete co-domains of all the encodings of all the users and the complete co-domain of
the encoding of the owner). Since the encoding is non-invertible, this knowledge does not
leak any information and allows the widest possible choice to the user.

• Repeated accesses. Repeated accesses for the primary and secondary indexes should refer
to blocks, instead of specific values. The reason for this is that two subsequent accesses can
be performed by two different users and therefore considering repeated searches referred to
values would leak to the second user the target of the search of the previous user. Although
such a leakage would be only on encoded values, we avoid it simply by assuming repeated
accesses to be referred to blocks (and not to values) and to consider all accessed blocks,
not only the target. At every access we then store at the server the identifiers of the blocks
(target, covers, or repeated accesses) accessed during the last search. The knowledge of
such identifiers is sufficient for a user to repeat an access to one of the paths visited by the
search just before hers without revealing to the user the target of the previous search (which
might have been performed by others).

• Shuffling. Shuffling works just like in the original proposal. We note that when shuffling,
a user may also move content which is not intelligible to her. However, she will not be
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able to change the content for which she is not authorized (since she would not know the
encryption key and tampering would be detected). Note that since all physical blocks stored
at the server are encrypted (with a key shared between all users and the data owner) and
encryption of the block as a whole is refreshed at every shuffle, the server cannot detect
whether the content of a block (or part of it) has changed or not. Hence, the fact that a user
can operate only on a portion of the block does not prevent correct execution of the shuffling
operation.

Figure 1.6 illustrates the algorithm, executed at the client side, searching for a value in the
primary index and in the secondary index. The algorithm operates as discussed in Section 1.5 and
relies on function Search to access the primary and secondary index structures.

Function Search receives as input the shuffle index T on which it should operate, the in-
dex value target_value target of the access, and the number num_cover of covers to be adopted.
It returns the tuple r with index value target_value (if any). The function randomly chooses
num_cover+1 values in the domain of the (primary or secondary) index and it downloads from
the server the identifiers of the blocks visited by the previous search (lines 1-3). It then visits the
shuffle index level by level, starting from the root. At each level level, the function determines
the identifiers of the nodes along the path to the target, covers, and repeated access (lines 5-8).
If the block along the path to the target has been accessed by the previous search, it is repeated
(an additional cover is used). The function downloads from the server and decrypts the blocks of
interest (line 13) and shuffles their content (line 16). To guarantee the correctness of the search
and of the index structure, the function updates the references to children of the nodes accessed at
level level-1 (which are the parents of the nodes shuffled at level level), variables target, repeated,
and cover[1, . . . ,num_cover] (lines 17-21). The nodes at level level-1 are then encrypted and
written at the server. The identifiers of the nodes accessed at level level are then used to update
repeated_search[level] (line 23). Once the leaf node where target_value is possibly stored has
been reached, the function extracts and returns the tuple with index value equal to target_value
(lines 25–27).

Given the request by user ui to search for value target_value, the algorithm computes the
user-based mapping ιi(target_value) and invokes function Search to search for such a value in
the secondary index (lines 1–4). It decrypts the tuple retrieved by Search, obtaining encoded
value ι(target_value) for target_value (line 5). If such a value is not NULL (i.e., there is a tuple
that ui can access with index value equal to target_value), the algorithm invokes function Search
over the primary index, looking for ι(target_value). It then computes/retrieves the encryption key
necessary to decrypt the retrieved resource and decrypts it. It returns the plaintext resource to the
user (lines 7–11). If the result of function Search over the secondary index is NULL, the algorithm
runs a fake search over the primary index (not to disclose any information to other users and to the
server about ui’s privileges) and returns an empty resource to the user (lines 12-14).

Figure 1.5(a-b) illustrates an example of access execution for search of value C by user u1,
assuming ι2(F) as cover and path [S001,S101,S202] as repeated access for the secondary index,
and ι(Q) as cover and path [P001,P102,P205] as a repeated access for the primary index. Ac-
cessed nodes are, besides the root, those annotated (as target, cover, or repeated) in the figure.
Figure 1.5(c-d) illustrates the new structure of the indexes that would result assuming shuffling:
for the secondary index as S101→S102, S102→S103, S103→S101, S202→S205, S205→S209,
and S209→S202; for the primary index as P101→P103, P102→P101, P103→P102, P202→P208,
P205→P202, P208→P205.
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/* P , S : primary and secondary index */
/* num_cover : number of cover searches */
/* ui,ki : user performing the access and her key */
/* hash : non-invertible cryptographic hash function */
INPUT target_value : value to be searched in the shuffle index
OUTPUT resource with index value target_value

MAIN
1: /* Phase 1: compute the user-based mapping ιi(target_value) */
2: target_idx := hash(target_value, ki)
3: /* Phase 2: search ιi(target_value) in the secondary index */
4: s := Search(S ,target_idx,num_cover)
5: target_idx := decrypt s[Resource] with ki /* encoded value ι(target_value) */
6: /* Phase 3: search ι(target_value) in the primary index */
7: if target_idx 6= NULL then
8: p := Search(P ,target_idx,num_cover)
9: k := retrieve key k with label `, where p[Resource]=〈`,content〉

10: result := decrypt content with k
11: return(result)
12: else target_idx := randomly choose a value for ι(target_value)
13: Search(P ,target_idx,num_cover)
14: return(NULL)

SEARCH(T ,target_value,num_cover)
1: repeated_search[0, . . . ,T .height] := download and decrypt the blocks of accesses for T

2: randomly choose cover_value[1. . .num_cover+1] for target_value in the co-domain of hash
3: repeated := repeated_search[0] /* identifier of the root block */
4: for level:=1. . .T .height do
5: /* identify the blocks to read from the server */
6: target := identifier of the node at level level along the path to target_value
7: cover[i] := id of the node at level level along the path to cover_value[i], i=1. . .num_cover+1
8: repeated := block identifier in repeated_search[level] that is a descendant of repeated
9: if target is the identifier of a node in repeated_search[level] then

10: repeated := target, num_cover := num_cover−1
11: ToGet := {target,repeated} ∪ cover[1. . .num_cover] /* ids of the blocks to be downloaded */
12: /* read blocks */
13: Nodes := download and decrypt the blocks with identifier in ToGet
14: /* shuffle nodes */
15: let π be a permutation of the identifiers of nodes in Nodes
16: shuffle nodes in Nodes according to π

17: update pointers to children of the parents of nodes in Nodes according to π

18: encrypt and write at the server nodes accessed at iteration level−1
19: target := π(target)
20: cover[i] := π(cover[i]), i=1. . .num_cover+1
21: repeated := π(repeated)
22: /* update the repeated search at level level */
23: repeated_search[level] := ToGet
24: encrypt and write at the server nodes accessed at iteration T .height and repeated_search
25: let n∈Nodes the node with n.id=target
26: let r∈n be the tuple such that r[I]=target_value
27: return(r)

Figure 1.6: Shuffle index access algorithm

1.6 Analysis

We discuss the protection guarantees (i.e., the correct enforcement of authorizations and the pro-
tection of access and pattern confidentiality) and the performance of our approach.

Access control enforcement. To demonstrate that the primary and secondary indexes described
in Section 1.4 guarantee the correct enforcement of the access control policy, we need to prove
that each user ui can access all and only the resources and index values in R she is authorized to
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access. Formally, ∀ui ∈ U : i) ui can access resource r[Resource] iff ui∈acl(r); ii) ui can see an
index value v iff ∃r∈R s.t. r[I]=v and ui∈acl(r).

Consider a user ui s.t. acl(r)={ui1 , . . . ,uin} and ui∈{ui1 , . . . ,uin}. We need to show that ui can
retrieve the plaintext content of tuple r. A user ui can retrieve and decrypt r iff: i) ui can compute
ιi(r[I]); ii) ∃!s ∈S s.t. s[I]=ιi(r[I]) and s[Resource]=E(ki,ι(r[I])); iii) ∃!p ∈P s.t. p[I]=ι(r[I])
and p[Resource]=〈`i1,...,in ,E(ki1,...,in ,r[Resource])〉; and iv) ui can visit S and P .
User ui can compute ιi(r[I]) since it is defined as hash(r[I],ki) and ui knows key ki, by Defini-
tion 1.4.2. Tuple s exists and belongs to S by Definition 1.4.4. Tuple p exists and belongs to
P by Definition 1.4.3. User ui can decrypt the content of s[Resource] as she knows ki∈Ki, and
the content of p[Resource] as she knows ki1,...,in∈Ki because ui∈acl(r), by Definition 1.4.2. Any
authorized user, including ui, can visit both S and P since she knows both the encryption key
k used by the data owner to encrypt nodes content to enable shuffling, and the co-domain of the
encoding functions.

Consider now a user ui s.t. acl(r)={ui1 , . . . ,uin} and ui 6∈{ui1 , . . . ,uin}. We need to show that
ui can access neither the plaintext content of r[Resources], nor index value r[I]. It is immediate
to see that ui cannot access the plaintext content of the tuple since it is encrypted with a key kX

(Definition 1.4.3) that ui does not know. In fact, by Definition 1.4.3, since ui does not belong to
acl(r), she does not know the corresponding encryption key. User ui cannot compute or guess
index value r[I] because r[I] is never represented in internal or leaf nodes of the primary and sec-
ondary indexes; it is instead represented via its encoded value (i.e., ι(r[I]) in the primary index and
ι j(r[I]), ∀u j∈acl(r), in the secondary index). Since the encoding function is, by Definition 1.4.1,
non-invertible, ui cannot exploit her knowledge of encoded values to retrieve the corresponding
original index values. Also, the traversal of the primary (and secondary) index does not reveal ui

anything about the original index values. In fact, by Definition 1.4.1, the encoding function does
not preserve the order relationship among values. Hence, similar encoded values (e.g., represented
in the same leaf) may not correspond to similar original values (and vice versa).

Access confidentiality. We first consider the storing server as our observer and analyze the pro-
tection offered by our proposal for the novel aspects introduced with respect to the shuffle index
proposal in [DFP+15]. Like in the original proposal, we focus the analysis on the leaves of the
shuffle index. In fact, nodes at a higher level are subject to a greater number of accesses, due to
the multiple paths that pass through them, and are then involved in a larger number of shuffling
operations, which increase their protection. A search operation on the primary and secondary in-
dex operates as in the original proposal. Hence, it enjoys the protection guarantees given by the
combined adoption of covers, repeated searches, and shuffling. In the considered scenario, how-
ever, we operate with two indexes and each search for a value entails an access to the secondary
index followed by an access to the primary index. The targets of the two accesses are related as
they are the encoding of the same original index value. However, both indexes protect the target
of accesses (as well as patterns thereof) and the covers and repeated searches adopted for the two
indexes are different. This practice prevents the server from identifying any correspondence be-
tween the values in the leaves of the two indexes.
We now consider a user as our observer. A user can observe the blocks accessed by another user in
a previous access (for repeated accesses), but she cannot identify the target of the access. In fact,
this set of blocks includes the target, covers, and repeated accesses. Furthermore, each leaf stores
multiple encoded values, which correspond to index values that are not close to each other since
the encoding function is not order-preserving. A user can also possibly trace shuffling operations,
but this would require her to download the whole index at each access.
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Performance evaluation. The performance of the system is assessed as the average response time
experienced by an authorized client when submitting an access request. System configurations
providing a primary index and a secondary index with fixed heights and different fan-outs exhibit
similar average response times for the client request. Moreover, varying the number of authorized
users and the size of the access control lists do not significantly influence the performance of
the system as long as the fan-out of the secondary index is chosen to be reasonably large. Our
experiments show that the latency of the network is the factor with the greatest impact in a large-
bandwidth LAN/WAN scenario. To assess the performance of our algorithm, we configured the
primary index and the secondary index as 3-layer unchained B+-trees with fan-out 512, both of
them built on a numerical candidate key of fixed-length to allow the indexing of more than 200K
different values. The size of the blocks (nodes) of each index was 8KiB. The hardware used in the
experiments included a client machine with an Intel Core i5-2520M CPU at 2.5GHz, L3-3MiB,
8GiB RAM DDR3 1066, running an Arch Linux OS. The server machine run an Intel Core i7-920
CPU at 2.6GHz, L3-8MiB, 12GiB, RAM DDR3 1066, 120GiB SSD disk running an Ubuntu OS.
The network environment was configured through the NetEm suite for Linux operating systems to
emulate a typical WAN interactive traffic with a round-trip time modeled as a normal distribution
with mean of 100ms and standard deviation of 2.5ms. The performance figures obtained for
accessing the secondary and the primary index exhibit an average value equal to 750ms, which
compares favorably with the response time of 630ms experienced by the client when accessing
two plain encrypted indexes (i.e., without shuffling).

1.7 Conclusions

We have developed an approach to enrich the shuffle index studied in WP2 with access control,
building on the techniques for enforcing selective access analyzed in WP3. The enriched shuffle
index illustrated in this chapter provides guarantees of access confidentiality while enabling data
owners to regulate access to their data selectively granting visibility to users. Also, like the original
shuffle index proposal, it has limited performance overhead.
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2. Selective Data Sharing via Encrypted Query
Processing

A data owner outsourcing the database of a multi user application wants to prevent informa-
tion leaks caused by outside attackers exploiting software vulnerabilities or by curious personnel.
Query processing over encrypted data solves this problem for a single user, but provides only lim-
ited functionality in the face of access restrictions for multiple users and keys. ENKI is a system
for securely executing queries over sensitive, access restricted data on an outsourced database. It
introduces an encryption based access control model and techniques for query execution over en-
crypted, access restricted data on the database with only a few cases requiring computations on the
client. A prototype of ENKI supports all queries seen in three real world use cases and executes
queries from TPC-C benchmark with a modest overhead compared to single user mode.

2.1 State of the Art

Queries over encrypted data. Techniques to handle certain relational operations are provided
by [SWP00] for key word search and [AKSX04, BCLO12, PLZ13, KS14] for order preserv-
ing encryption. Providing data confidentiality using tuple-wise encryption and providing query
processing using indexes organized in buckets is proposed in [HIML02, DDJ+03]. Ciriani et
al. satisfy privacy-constraints by (partial) encryption and fragmentation of data and rely on the
application logic to process a query [CDF+09]. Popa et al. introduce adjustable query-based
symmetric encryption to process all relational operation on server-side [PRZB11]. The execu-
tion of complex queries e.g. TPC-H benchmark at the costs of client-server splits is discussed in
[TKMZ13]. We see no principle obstacles to extend ENKI accordingly. Query processing with
multiple keys without sharing data is presented in [PRZB11] and using searchable encryption in
[YBDD09, PZ13, ARCI13]. Ferretti et al. introduces a proxy concept to handle multiple user in
the CryptDB setting, but do not present an experimental evaluation or a security analysis to proof
their claims [FCM13].
Joins over encrypted data. Hacigumus et al. require extensive query rewriting to compute joins
[HIML02] while Agrawal et al. propose an interactive approach [AES03]. Symmetric, transitive
proxy re-encryption of deterministic encryption schemes are provided in [PH78, PRZB11]. Fu-
rukawa et al. provide a non-transitive, non-symmetric approach to compute a join such that a prob-
abilistic encryption is degraded to be deterministic in the single user mode [FI13]. The encryption
scheme presented in [ARCI13] also handles join operations, but no confidentiality guarantees are
provided.
Access Control. Encryption enforced access control for outsourced data is proposed in [DFJ+07],
but it protects the data only the face of an untrusted service provider. Rizvi et al. introduce autho-
rization views enabling specification of access policies using SQL queries on the application level
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[RMSR04]. However, this only enforces access control for users.
Key Management. The key management strategies introduced in [AFB05, DDF+05] can extend
our access control model. ENKI can benefit from these strategies by a reduced number of keys a
user has to store.

2.2 ESCUDO-CLOUD Innovation

We design, implement, and evaluate ENKI, a system that securely processes relational operations
over encrypted, access restricted relations. Its approach is to encrypt data with different access
rights with different keys and to introduce techniques to handle query processing over data en-
crypted with multiple encryption keys. The support of query processing over access controlled
encrypted data presents two major challenges: The first challenge is the mapping of any complex
access control structure required in a multi user scenario to an encryption enforced access control
model which still allows query execution. The second challenge is to efficiently execute a range of
queries while minimizing the revealed information and the amount of computations on the client.
We tackle these challenges using two ideas: First, we introduce a new model for encryption based
access control in Section 2.5 which defines access control restrictions on the level of attribute val-
ues and applies encryption as a relational operation to enforce the access restrictions on a relational
algebra.
Second, we present different techniques to support the execution of relational operations in multi
user mode. These include a rewriting strategy to adapt relational operations over data encrypted
with different keys in Section 2.6.1, a new privacy-preserving method for join, set difference, and
count distinct in multi user mode in Section 2.6.2, and a post-processing step on the client saving
computational effort on the client while preserving the confidentiality of the data in Section 2.6.3.
Our results are subsumed in a multi user algorithm introduced in Section 2.6.4.
Previous work only focuses on the access control mechanism [DFJ+07] or the key management
[AFB05, DDF+05]. Thus, the achieved ESCUDO-CLOUD innovations are:

• Our formulated system builds on previous work in encrypted query processing for a single
user as described in [HIML02, DDJ+03, AES03, CDF+09, PRZB11], but is the first system
that efficiently supports queries over data encrypted with different keys. Existing approaches
only support query processing with multiple keys for searchable encryption which allows
to check if an encrypted value matches a token [YBDD09, PZ13, ARCI13] or if there is no
shared data [PRZB11].

• We overcome the limitations of current approaches for multiple users offer either limited
functionality [YBDD09, PRZB11, PZ13, ARCI13] or expose confidential information to
the database server [Ora10].

Part of the work of this chapter was performed jointly with UNIMI and has been published in
[HKD15].

2.3 Introduction

Outsourcing an application’s database backend offers efficient resource management and low
maintenance costs, but exposes outsourced data to a service provider. To ensure data confiden-
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tiality, data owners have to prevent unauthorized access while data is stored or processed. Storing
data on an untrusted database requires protection measures against curious personnel working for
the service provider or outside attackers exploiting software vulnerabilities on the database server.
In addition, data owners also have to control data access for their own personnel.
An emerging solution to the problem of untrusted databases is encrypted query processing [SWP00,
HIML02, DDJ+03, AES03, AKSX04, CDF+09, YBDD09, BCLO12, PRZB11, PZ13] where
queries are executed over encrypted data.
To grant or restrict shared data access to personnel processing unencrypted query results, data
owners have to implement additional fine-grained access control mechanisms.
Implementing such a multi user mode using encrypted query processing for a single user operat-
ing with one key [SWP00, HIML02, DDJ+03, AES03, AKSX04, CDF+09, BCLO12, PRZB11]
combined with an additional authorization step at the application server like [RMSR04] can be
compromised: Assume that a user working for the data owner and a service provider’s employee
collude. If the user knows the decryption key of the data and the employee provides the encrypted
data stored in the database, they are able to decrypt all data bypassing the access control mecha-
nisms.
We have implemented ENKI for a SAP HANA database extending HANA’s JDBC driver and a
client application. Our solution supports most relational operations and aggregation functions. The
evaluation of different query types seen in three use cases and in the TPC-C benchmark shows that
this range is suitable for real world applications. Our performance evaluation shows that ENKI
consumes an average overhead of 36.98% (which is a time penalty of 0.6181 ms on average) for
the query execution of queries from the TPC-C benchmark in a two user scenario compared to the
single user mode and that the overhead increases modestly in a more complex scenario.

We have implemented ENKI for a SAP HANA database extending HANA’s JDBC driver and
a client application. Our solution supports most relational operations and aggregation functions.
The evaluation of different query types seen in three use cases and in the TPC-C benchmark shows
that this range is suitable for real world applications. Our performance evaluation shows that ENKI
consumes an average overhead of 36.98% (which is a time penalty of 0.6181 ms on average) for
the query execution of queries from the TPC-C benchmark in a two user scenario compared to the
single user mode and that the overhead increases modestly in a more complex scenario.

2.4 Overview

Problem Statement. Alice and Bob share a database with two tables R and S. Assume that user
Alice has private access to one tuple and shares access to four other tuples with user Bob in both
tables R and S respectively.
We encrypt tuples of table R only accessible for Alice with key r_a and tuples of table S only
accessible for Alice with key s_a. Tuples of table R accessible for Alice and Bob are encrypted
with key r_ab and of table S with key s_ab. Alice knows keys r_a, r_ab, s_a, and s_ab and Bob
knows keys r_ab and s_ab.
Assume Alice issues an equal join on tables R and S. Therefore, the database executes a cartesian
product on all tuples of R and S that Alice is allowed to access and proxy re-encrypts these tuples
to check the equal condition. Current proxy re-encryption protocols for deterministic encryption
schemes [PRZB11],[PH78] cannot adhere the access restrictions while applied to the tuples: they
reveal private information. To illustrate the problem, consider the proxy re-encryption of keys a
and ab to a new key c denoted as a∼ c and ab∼ c. Existing protocols are symmetric and transitive
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Figure 2.1: ENKI’s architecture and threat model

such that a proxy re-encryption a ∼ c ∼ ab exists. Therefore, Bob can proxy re-encrypt all data
encrypted with Alice’s key a to their shared key ab. This circumvents the defined access restric-
tions as the proxy re-encryption reveals information exclusively accessible by Alice.
Architecture. Figure 2.1 shows ENKI’s overall architecture and the involved entities. These in-
volved entities are the data owner who also maintains the application and the service provider who
operates the database. There are also different users (denoted in Figure 2.1 as User A, User B,
User C) which are personnel working for the data owner.
A user accesses the database backed application with a client which issues queries via JDBC driver
to the database backend. We extended the JDBC driver with ENKI Query Adapter to rewrite an
incoming query with minimal effort to be processable in the multi user mode and modified the
clients to post-process the returned query results.
To execute a rewritten query on a database where all tuples are encrypted, the predicates of this
query must be encrypted too. Based on access policies, users are acquainted with the necessary en-
cryption keys. These keys are stored encrypted in a key store. If a user logs in, she hands over her
masterkey to decrypt her encryption keys stored in the key store. Using the stored and decrypted
encryption keys, ENKI Query Adapter encrypts the rewritten query. The database management
system (DBMS) receives the rewritten, encrypted query and executes it on the encrypted database.
The encrypted query result is returned to the JDBC driver where it is decrypted by ENKI Query
Adapter before it is post-processed on the client. Note that keys stored in the key store cannot be
decrypted if their respective users are logged out.
DBMS and database stay unmodified. User-defined functions (UDFs) perform cryptographic op-
erations like our new privacy-preserving proxy re-encryption introduced in Subsection 2.6.2.
Threat. Our threat model assumes that an attacker has compromised application and database
server. The attacks are depicted with flashes in Figure 2.1. We assume that the attacker is pas-
sive: she can read all information stored on the database, but does not manipulate the stored data
or issued queries. The attacker learns the encryption keys of all compromised users at the time
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Access Control Matrix of Relation R

User t1 t2 t3 t4 t5
Alice 0 1 1 1 1
Bob 1 1 0 1 0

Figure 2.2: Access Control Matrix for a relation R with five tuples t1, . . . , t5 and two users Alice
and Bob.

of the attack. Acquainted with their masterkeys and their encryption keys, the attacker is able to
read all data of these compromised users stored on the database. In particular, the attacker can
access data shared with other uncompromised users. ENKI offers confidentiality guarantees for
non-compromised users during such an attack: the attacker cannot learn their private data i.e. data
which are not shared with compromised users.

2.5 Encryption-Based Access Control on a Relational Algebra

This section presents a new model how to specify access rights on attribute values of relations and
how to enforce them cryptographically.

2.5.1 Access Restrictions on Relations

We define access restrictions on attribute values of a relation using an access control matrix. Note
that an access control matrix may serve as a base for more enhanced access models exploiting
role-based access control [SHV01].

Let A be an access control matrix where the rows correspond to subjects s and the columns
correspond to objects o. Figure 2.2 illustrates an access control matrix with two users, Alice and
Bob, as subjects and a relation R containing five tuples, t1, . . . , t5, as objects. We denote S as the
set of all subjects with |S|= n and O as the set of all objects.

A data owner grants access for an object o to a subject s by setting the entry in the access
matrix A [s,o] to 1. If no access is granted, the entry is set to 0. A column of an access control
matrix is a representation of the set of subjects which have access to a an object o. We denote
this as qualified set QSo of object o. We assume that each object can be accessed by at least one
subject such that there are no zero columns and no empty qualified sets. Consider QSt4 = {1,1} in
Figure 2.2. This is the qualified set of object t4 denoting that user Alice and user Bob have access
to tuple t4.

We further name P∗(S) the power set of all subjects S without the empty set. We denote each
of these subsets as pi ∈P∗(S) for all i = 1, . . . ,2n− 1 and call it a user group. From the access
control matrix depicted in Figure 2.2, we derive three user groups:

p1 ={Alice} := A

p2 ={Bob} := B

p3 ={Alice,Bob} := AB.

We define a mapping which assigns each user to the user groups she participates in. For each
user s, there is a set of p j with j = {1, . . . ,2n−1} of all user groups the user participates in. This

ESCUDO-CLOUD Deliverable D3.3



Section 2.5: Encryption-Based Access Control on a Relational Algebra 33

User Group Mapping

User User
Group

Alice A
Alice AB
Bob B
Bob AB

Virtual Relation Mapping

User
Group

Relation Virtual
Relation

A R R_A
B R R_B
AB R R_AB

Figure 2.3: On the left, User Group Mapping which relates user to usergroup. On the right, Virtual
Relation Mapping which relates a pair of relation and user group to a virtual relation.

mapping is called user group mapping and can be stored as a relation with the attributes user and
user group. Figure 2.3 shows the user group mapping for our example. It has two attributes: User
and User Group. It shows that user Alice is member of user groups A and AB and user Bob is
member of user groups B and AB.

A qualified set of an object maps to one and only one user group which contains the same set
of subjects. So, we group all objects accessible by the same user group and define an object set as

O(pi) = {o|o ∈ O∧QSo = pi}

for a user group pi ∈P∗(S). This is the set of all objects assigned to the same user group. In
Figure 2.2, it is

O(p1) = {t3, t5}
O(p2) = {t1}
O(p3) = {t2, t4}.

Note that all O(pi) form a partition over O as each two object sets are pairwise disjoint and the
union of all object sets (which are non-empty by definition) is equal to the set of all objects O. We
use this resulting partition to divide the underlying relation. This is to store each object set in a
separate relation which we call virtual relation. A virtual relation indicates that one user group can
access all of its tuples. This saves the annotation of a tuple with access information as its insertion
in a virtual relation implies that this tuple can be accessed by a certain user group. For n users,
each relation is partitioned in a maximum of 2n− 1 virtual relations. The total number of tuples
does not change as each tuple of a relation is stored in one and only one virtual relation.

We define a mapping which assigns each user group and relation to the virtual relation contain-
ing the tuples this user group is granted access to. This mapping is called virtual relation mapping
and can be stored as a relation with the attributes User Group, Relation, and Virtual Relation. Fig-
ure 2.3 shows the virtual relation mapping for the user groups A, B, and AB and the relation R.
The pair user group A and relation R is mapped to virtual relation RA, the pair user group B and
relation R is mapped to virtual relation RB, and the pair of user group AB and relation R is mapped
to virtual relation RAB. The data owner specifies and maintains the user group mapping and the
virtual relation mapping.
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2.5.2 Encryption as Relational Operation

We now define encryption as a relational operation and show how to enforce the previously defined
access restrictions.

Definition 2.5.1. Consider a relation R = R(A1, . . . ,An) with A1, . . . ,An attributes. It contains
tuples tk = (t1k , . . . , tnk) with 1, . . . ,n the number of attributes and k = 1, . . . , j the cardinality. An
encryption κz(Ai) of attribute Ai with key z is defined as

κz(Ai) := {κz(tik)|tik ∈ Ai for all k = 1, . . . , j}

with tik the attribute values of Ai for all k = 1, . . . , j. The encryption of relation R = R(A1, . . . ,An)

is the encryption of its attributes A1, . . . ,An and their attribute values t1k , . . . , tnk for all k = 1, . . . , j
as

κz(R) := R(κz(A1), . . . ,κz(An))

= {κz(t1k), . . . ,κz(tnk)|tik ∈ Ai for all i = 1, . . . ,n and for all k = 1, . . . , j}.

Focusing on the query processing over encrypted data, we rely on the adjustable query-based
encryption introduced in [PRZB11] which presents onion encryption layers for different classes
of computation and thereby allows the execution of any relational operations over one attribute.
We formulate the onion encryption layers as the composition of encryption operations over an
attribute Ai. It is

Onion DET: κ
RND
z (κDET

z (κJOIN
z (Ai)))

Onion OPE: κ
RND
z (κOPE

z (Ai))

Onion HOM: κ
HOM
z (Ai).

Applying the adjustable query-based encryption strategy allows to dynamically adjust layers of en-
cryption on the DBMS server to support relational operations. In the following sections, we only
refer to an encryption scheme as relational operation κz with key z relying on the efficient sup-
port of encrypted query processing, but omit the details of the onion encryption layer, encryption
scheme, or encryption key.

We now use encryption to enforce the access restrictions on tuples of a relation. Consider a
relation R = R(A1, . . . ,An) and three user groups A, B, and AB. The data owner splits R into virtual
relations RA, RB, and RAB such that

RA(A1, . . . ,An) = RB(A1, . . . ,An) = RAB(A1, . . . ,An).

The data owner generates encryption keys for each user group and encrypts the respective virtual
relation with this key. She generates key r_a for user group A and encrypts RA as

κr_a(RA) = {κr_a(t)|t ∈ RA}.

She generates keys r_b and r_ab and encrypts RB and RAB for user groups B and AB respectively.
The data owner issues the respective keys to the member of each user group.
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2.6 Query Processing over an Encrypted Relational Algebra

Encrypted query processing over a relational operation can be efficiently supported for single
user mode [PRZB11]. In particular, this holds for the following primitive and derived relational
operations: selection, projection, rename, cartesian product, set union, set difference, equi join,
and aggregate functions group by, count (distinct), sum, average, maximum, minimum, and sort.
The introduction of access restrictions on relations interferes with encrypted query processing in
three ways:

First, a relational operation is now executed over (potentially) multiple virtual relations de-
pending on the access rights of the user rather than on one relation. To tackle this problem, we
introduce query rewriting strategies in Subsection 2.6.1. Applying these rewriting strategies does
not change the application logic: we point out that the user only has to submit the original, un-
changed query and its user id. The ENKI Query Adapter rewrites the query and adapts it for
encrypted query processing.

Second, proxy re-encryption of virtual relations are necessary to support count distinct, equi-
join, or set difference operations on the server. These might lead to a data compromise or a
malfunction as a proxy re-encryption might falsely grant or revoke access rights. We present a
new privacy-preserving encryption scheme to support proxy re-encryption in a multi user setting
in Subsection 2.6.2. It offers proxy re-encryption of attributes or relations encrypted with different
keys while preserving the access rights.

Third, some relational operations can only be executed on server-side with significant com-
putational effort, huge storage capacities, or diminishing security. For such cases, we present a
client-server split, requiring small data traffic and minimal computational effort on the client while
preserving security in Subsection 2.6.3.

All introduced techniques are combined in a multi user algorithm to handle the presence of
multiple users described in Subsection 2.6.4. The multi user algorithm takes as input a user id and
a query consisting of a combination of relational operations, processes it over virtual relations, and
returns the result. It can handle an arbitrary set of users.

To explain the three techniques, we use the small example introduced in Section 2.4 where we
part the table R in virtual relations RA, RB, and RAB and encrypt them as κr_a(RA), κr_b(RB), and
κr_ab(RAB) with keys r_a, r_b, r_ab. Table S is treated accordingly.

2.6.1 Rewriting Strategies

We introduce rewriting strategies for the relational operations selection, projection, rename, ag-
gregate function count, set union, and cartesian product over encrypted virtual relations. Applying
these rewriting strategies allows the straightforward execution of these relational operations over
encrypted data. The rest of this subsection presents the rewriting of these relational operations in
detail.

Selection. Consider a predicate θ (e.g. =,<,≤,>,≥) and α,β attributes, constants, or terms of
attributes, constants, and data operations. A selection σαθβ (R) on relation R issued by user Alice
is executed on the encrypted virtual relations κr_a(RA) and κr_ab(RAB). The condition αθβ has to
be applied on both virtual relations. Therefore, αθβ is encrypted with key r_a as κr_a(α)θκr_a(β )
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and with key r_ab as κr_ab(α)θκr_ab(β ). It is

(σαθβ (R),Alice) =σκr_a(α)θκr_a(β )κr_a(RA)∧σκr_ab(α)θκr_ab(β )κr_ab(RAB)

={κr_a(t)|t ∈ RA∧κr_a(α)θκr_a(β )}∪ {κr_ab(t)|t ∈ RAB∧κr_ab(α)θκr_ab(β )}.

Projection. Let R′ be a relation with

R′(Ai(1), . . . ,Ai(k))⊆ R(A1, . . . ,An)

and R′A and R′AB the respective virtual relations. A projection πβ (R) with attribute list

β = (Ai(1), . . . ,Ai(k))⊆ (A1, . . . ,An)

on relation R issued by user Alice is executed over the virtual relations κr_a(RA) and κr_ab(RAB).
Therefore, the attribute list β is encrypted with key r_a as

κr_a(β ) = κr_a(Ai(1)), . . . ,κr_a(Ai(k))

and also encrypted with key r_ab as

κr_ab(β ) = κr_ab(Ai(1)), . . . ,κr_ab(Ai(k)).

It is

(πβ (R),Alice) =πκr_a(β )(κr_a(RA))∪πκr_ab(β )(κr_ab(RAB))

={κr_a(t)|t ∈ R′A}∪{κr_ab(t)|t ∈ R′AB}.

Rename. A rename ρ of an attribute Ai ∈ R to Q issued by Alice is executed on the encrypted
virtual relations κr_a(RA) and κr_ab(RAB). The new attribute name Q is encrypted with key r_a
as κr_a(Q) and with key r_ab as κr_ab(Q) respectively. It replaces the encrypted original attribute
name Ai in the virtual relations. It is

(ρQ←Ai(R),Alice) =ρκr_a(Q)←κr_a(Ai)(κr_a(RA))∪ ρκr_ab(Q)←κr_ab(Ai)(κr_ab(RAB)).

A rename is not persisted.

Count. The aggregate function β γCount(Ai)(R) on a relation R issued by Alice is executed on the
virtual relations κr_a(RA) and κr_ab(RAB). It is

(β γCount(Ai)(R),Alice) =κr_a(β )γCount(κr_a(Ai))κr_a(RA)+κr_ab(β ) γCount(κr_ab(Ai))κr_ab(RAB).

with Count the aggregate function executed on server-side. It counts the numbers of attribute
values of Ai for virtual relations κr_a(RA) and κr_ab(RAB) separately and adds these partial results
on the server. The output represents the number of attribute values of attribute Ai accessible by
Alice.

Set Union. Let relations R and S have the same set of attributes. A set union R∪ S issued by
Alice is executed on the virtual relations κr_a(RA), κr_ab(RAB), κs_a(SA), and κr_ab(SAB). It is

(R∪S,Alice) ={κr_a(t)|t ∈ RA}∪{κr_ab(t)|t ∈ RAB}
∪ {κs_a(t)|t ∈ SA}∪{κr_ab(t)|t ∈ SAB}.
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Cartesian Product. We denote a tuple r of relation R and a tuple s of relation S. A cartesian
product R×S issued by Alice is executed on the virtual relations κr_a(RA), κr_ab(RAB), κs_a(SA),
and κs_ab(SAB). It is

(R×S,Alice) ={κr_a(r)κs_a(s)∨κr_a(r)κs_ab(s)∨κr_ab(r)κs_a(s)∨κr_ab(r)κs_ab(s)

|r ∈ (RA∨RAB)∧ s ∈ (SA∨SAB)}.

2.6.2 Proxy Re-Encryption as Relational Operation

Processing the unary operation count distinct or the binary operations equi-join and set differ-
ence over (deterministically) encrypted virtual relations requires that these virtual relations are
encrypted with the same encryption key as these operations rely on comparisons which are only
feasible if the same encryption key is used. Our goal is to proxy re-encrypt virtual relations on
the database server so that all queried attributes share the same encryption key while preserving
data confidentiality. To formalize this approach, we define proxy re-encryption as a relational
operation.

Definition 2.6.1. A proxy re-encryption alters an attribute κz(Ai) encrypted with key z to enable
its decryption with another key y. We define a proxy re-encryption χy(κz(Ai)) of attribute Ai as

χy(κz(Ai)) :={χy(κz(tik))|tik ∈ Ai for all k = 1, . . . , j}
={κy(tik)|tik ∈ Ai for all k = 1, . . . , j}
=κy(Ai)

with tik the attribute values of Ai for all k = 1, . . . , j.
The proxy re-encryption of a relation κz(R) is the proxy re-encryption of all attributes. It is

χy(κz(R)) : = R(χy(κz(A1)), . . . ,χy(κz(An)))

= R(κy(A1), . . . ,κy(An))

= κy(R).

Definition 2.6.2. A proxy re-encryption is called symmetric if

χb(κa(Ai)) = κb(Ai)⇔ χa(κb(Ai)) = κa(Ai).

Definition 2.6.3. A proxy re-encryption is called transitive if

χb(κa(Ai)) = κb(Ai)∧χc(κb(Ai)) = κc(Ai)⇒ χc(κa(Ai)) = κc(Ai).

A symmetric and transitive proxy re-encryption scheme ensures privacy-preserving compu-
tations on the database server for the single user mode [PRZB11]. However, if you recall the
problem statement in Section 2.4, it does not preserve data confidentiality in the face of multiple
users as its application leads to a data compromise. This motivates the introduction of a new non-
symmetric and non-transitive proxy re-encryption scheme called DETPRE as the cryptographic
primitive for count distinct, equi-joins, and set differences in multi user mode.

Definition 2.6.4. A deterministic proxy re-encryption scheme is a tuple of algorithms ParamGen,
KeyGen, Enc, Token, Pre such that:
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• Parameter Generation. The probabilistic polynomial time algorithm ParamGen takes as
input the security parameter λ and outputs system parameters params:

params← ParamGen(1λ )

• Key Generation. The probabilistic polynomial time algorithm KeyGen takes as input the
security parameter λ and outputs a key ki:

ki← KeyGen(1λ )

• Encryption. The deterministic polynomial time algorithm Enc takes as input a plaintext m
and key ki and outputs a ciphertext:

C = Enc(m,ki)

• Token. The deterministic polynomial time algorithm Token takes as input two keys ki,k j

and outputs a token to proxy re-encrypt ki to k j:

T = Token(ki,k j)

• Proxy Re-Encryption. The deterministic polynomial time algorithm Pre takes as input a
ciphertext C and a token T and outputs a ciphertext C′:

C′ = Pre(C,T )

We now present our deterministic proxy re-encryption scheme DETPRE by specifying each
algorithm.

ParamGen. Given a security parameter λ , ParamGen works as follows: generate a prime p and
two groups G1,G2 of order p, and a bilinear, non-degenerated, computable map e : G1×G1 −→
G2. Choose a generator G ∈G1 uniformly at random.

KeyGen. Choose ki ∈ Zp uniformly at random.

Enc. To encrypt plaintext m with key ki as ciphertext C compute

C = Gmki ∈G1.

Token. To generate a token T that proxy re-encrypt a ciphertext encrypted with key ki to be
encrypted with key k j, compute

T = G
k j
ki ∈G1.
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Pre. To proxy re-encrypt a ciphertext C encrypted with key ki to a ciphertext C′ encrypted with
key k j, compute

C′ = e(C,T ) =e(Gmki ,G
k j
ki ) = e(G,G)

mki
k j
ki = e(G,G)mk j

=gmk j ∈G2.

DETPRE is single-hop meaning that a ciphertext can only be proxy re-encrypted once. This
restricts its usability as the key of a once proxy re-encrypted ciphertext is persisted. Therefore,
we propose the following strategy which allows to benefit from the application of DETPRE while
maintaining its re-usablity:

1. We encrypt all attribute values using the algorithm Enc. These encrypted attribute values
are called base values.

2. If a proxy re-encryption is required, we use the algorithm Pre and proxy re-encrypt the base
values with a temporary key c. The proxy re-encrypted results are called PreDet values.

3. We store the PreDet values temporarily as a concatenation to the base values and use them
to process a relational operation.

4. After the user logs out, the PreDet values are deleted.

We now describe our adversary model to informally explain the security guarantees our proxy
re-encryption schemes provides. We consider a passive adversary, i.e., he can read all encrypted
attribute values of all users, but does not modify them. We assume that the adversary has also
compromised the application and its database proxy and observes executed operations. In particu-
lar, if a user is compromised during the attack, the adversary learns the masterkey, the encryption
keys stored in the key store, and the used tokens of a user. Our goal is to prevent an adversary from
using this information to learn private data of non-compromised users. Therefore, we assume a
number of users distributed to n user groups with each user group endowed with an encryption key
d1, . . . ,dn which are kept private.

We allow the adversary to compromise all but one encryption key. The adversary could have
learned these keys as a result of a collusion between service provider and personnel working for
the data owner. Therefore, she has access to keys {d1, . . . ,dn−1} but not to key dn. It implies that
the adversary can decrypt all database entries encrypted with keys d1, . . . ,dn−1. In particular, if
dn is the private key of a single user i.e. of a user group with only one member and this user also
participates in additional user groups with compromised members, then the adversary can decrypt
all tuples encrypted for these user groups but cannot decrypt the tuples encrypted with dn.

The adversary can compute or learn tokens Token(di∗ ,di) for all compromised keys di∗ ∈
{d1, . . . ,dn−1} to be proxy re-encrypted to an arbitrary key di. Thereby, he can proxy re-encrypt
the database entries encrypted with the compromised encryption keys d1, . . . ,dn−1. The database
entries encrypted with key dn are not compromised and the adversary cannot access these database
entries. He also cannot compute or learn tokens Token(dn,di) which proxy re-encrypt database
entries encrypted with key dn to an arbitrary key di. However, he can compute tokens Token(di,dn)

such that a database entry encrypted with an arbitrary key di can be proxy re-encrypted to key dn.
Given all these information, the adversary should not be able to proxy re-encrypt an attribute value
encrypted with encryption key dn to another key. We refer to this property as non-reversion.

Next, we study a security game to formally define the described security guarantees and proof
our claims based on a known hardness assumption. Let A be a probabilistic time adversary
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modeled as described above. Let C be the challenger. Then consider the following security game
for security parameter λ :

Setup. C takes security parameter λ , runs algorithm ParamGen, and returns the system pa-
rameters params to A . C also runs algorithm KeyGen and outputs keys d1, . . . ,dn. C

sends d1, . . . ,dn−1 to A and keeps dn as a secret. C runs algorithm Token and outputs
Token(di,d j) for all i, j = 1, . . .n that allow a database entry encrypted with key di to be
proxy re-encrypted to key d j. C sends Token(di∗ ,di) with i∗ = 1, . . . ,n−1 and i = 1, . . . ,n
to A .

Phase 1. A performs actions q1, . . . ,qm where qi is one of the following type:

Enc A chooses an arbitrary value s and runs algorithm Enc to encrypt it with key di∗ with
i∗ = 1, . . . ,n−1. This is as he knows the keys d1, . . . ,dn−1 of all compromised users.
Although he does not know key dn, he can encrypt an arbitrary value with key dn as he
can compute

Token(di∗ ,dn)di∗ = (G
dn
di∗ )d∗i = Gdn

given a Token(di∗ ,dn) and a key di∗ to encrypt a chosen value s under the uncompro-
mised key dn as Gmdn ,

Pre A runs algorithm Pre to proxy re-encrypt a ciphertext C =Gdim with a token Token(di,d j)=

G
d j
di as

Pre(C,T ) = e(Gdim,G
d j
di ) = e(Gdim,G

d j
di )

= e(G,G)
dim

d j
di = e(G,G)d jm = gd jm.

Challenge. A chooses a key d and sends it to C . C picks a random value r and encrypts it with
key dn as Grdn . It sends Grdn to A and ask her to proxy re-encrypt C = Grdn to key d as Cd .

Phase 2. A performs further actions qm+1, . . . ,qn of the types described above.

Guess. A outputs its guess C′d and wins the security game if and only if Cd =C′d .

The advantage of A in the security game is defined as

Pr[Cd =C′d ] = ε.

Definition 2.6.5. DETPRE is secure if for a probabilistic time adversary A

Pr[A wins the Security Game of DETPRE]

is negligible in λ .

Assumption 1. The l-Bilinear Diffie-Hellman Inversion Assumption (l-BDHI) holds if for any
probabilistic polynomial time (PPT) adversary A the probability that A on input

Ga,Ga2
,Ga3

, . . . ,Gal

outputs W such that W = g
1
a is negligible in security parameter λ [Ver13].

Theorem 1. If the L-BDHI assumption holds, then our proxy re-encryption is secure.
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Proof. Assuming that an adversary can solve the described security game correctly, we construct
a polynomial time algorithm which can solve the underlying problem of the l-Bilinear Diffie-
Hellman Inversion assumption. This algorithm receives an instance of the l-BDHI problem with

Ga,Ga2
, . . . ,Gal ∈G1

and has to compute e(G,G)
1
a = g

1
a ∈G2.

Setup. Receive an instance of the l-BDHI problem as

p,e,G1,G2,G,g,Ga,Ga2
, . . . ,Gal

Choose di ∈ Zp uniformly at random. Run algorithm Token to compute Token(di,d j) with i, j =
1, . . . ,n. Send system parameters p,G1,G2,e,G,g, encryption keys d1, . . . ,dn−1, and tokens Token(di∗ ,di)

with i∗ = 1, . . . ,n−1 and i = 1, . . . ,n to A .

Phase 1. A performs the following actions:

Enc. A runs algorithm Enc to encrypt arbitrary messages m with keys d1, . . . ,dn−1. To encrypt
message m with encryption key dn, which is not known to A , the adversary exploits its knowledge
of encryption keys d1, . . . ,dn−1 and tokens Token(di∗ ,dn) to compute

G
dn
di∗

di∗ = Gdn .

Using this result, A computes Gmdn .

Pre. Adv runs algorithm Pre to proxy re-encrypt ciphertext C encrypted with key di∗ with i∗ =
1, . . . ,n−1 to be encrypted with key di with i = 1, . . . ,n.

Challenge. A chooses a key d /∈ {d1, . . . ,dn} and sends it to C . C picks a valid ciphertext as

C = Enc(m,k) = Gm̃a = Gr

and sends C = Gr to A . C asks her to guess the proxy re-encryption of C to key d as

V = g
r
a d .

Phase 2. A performs further actions as described above.

Guess. A returns its guess for V as V ′ to C . C computes

W =V
1
rd

to solve the instance of the l-BDHI problem as

W =V
1
rd = (g

r
a d)

1
rd = g

1
a .
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The probability that this algorithm solves the l-BDHI problem is the same as the advantage of the
adversary in the security game. It is

Pr[V =V ′] = ε.

If the l-BDHI assumption holds, this advantage can only be negligible. Therefore, the adversary
can only achieve this attack with a negligible advantage.

The remaining of this section presents the proxy re-encryption and rewriting strategies to exe-
cute the relational operations count distinct, set difference, and equi-join.

Count Distinct. The aggregate function count distinct

β γCountDistinct(Ai)(R)

on a relation R issued by Alice is executed on the virtual relations κr_a(RA) and κr_ab(RAB). As
these virtual relations are encrypted with different keys, it is not possible to apply a count distinct.
So, we adjust the key of both virtual relations to key c. It is

χc(κr_a(RA)) = RA(χc(κr_a(A1)), . . . ,χc(κr_a(An)))

= RA(κc(A1), . . . ,κc(An))

= κc(RA)

and χc(κr_ab(RAB)) = κc(RAB) respectively. The aggregate function count distinct is then com-
puted as

(β γCountDistinct(Ai)(R),Alice) =κc(β ) γCountDistinct(κc(Ai))(κc(RA)∪κc(RAB)).

It counts the numbers of different attribute values of Ai of all relations accessible by user Alice.

Set Difference. Let relations R and S have the same set of attributes. A set difference R\S of
relation S in relation R issued by Alice is executed on the virtual relations κr_a(RA), κr_ab(RAB),
κs_a(SA), and κs_ab(SAB). As these virtual relations are encrypted with different keys, it is not
possible to apply a set difference. Therefore, we adjust the keys of all virtual relations to key c. It
is

χc(κr_a(RA)) = RA(χc(κr_a(A1)), . . . ,χc(κr_a(An)))

= RA(κc(A1), . . . ,κc(An))

= κc(RA)

and κc(RAB), κc(SA), and κc(SAB) respectively. Then, we apply the set difference on the proxy
re-encrypted virtual relations. It is

R\S = {κc(t)|t ∈ (RA∨RAB)∧ t /∈ (SA∨SAB)}.
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Equi-Join. An equi-join issued by user Alice between two relations

R = R(A1, . . . ,An) and S = S(B1, . . . ,Bm)

on their respective attributes Ai and B j is executed on the virtual relations κr_a(RA), κr_ab(RAB),
κs_a(SA), and κs_ab(SAB). However, the attributes Ai and B j are encrypted with different keys
within the relations (Ai is encrypted with key r_a in relation RA and with key r_ab in relation RAB

and B j is encrypted with key s_a in relation SA and with key s_ab in relation SAB). To apply the
condition Ai = B j on the accessible subsets of R and S, we have to adjust the key of all virtual
relations and the condition with a shared encryption key. It is

χc(κr_a(RA)) = κc(RA)

and the keys of κc(RAB), κc(SA), and κc(SAB) are adjusted respectively.
We encrypt the condition Ai = B j as κc(Ai) = κc(B j). As now all involved relations are en-

crypted with the same key c, we can apply these encrypted condition as follows

(R ./Ai=B j S,Alice) = {κc(r)κc(s)|r ∈ (RA∨RAB)∧ s ∈ (SA∨SAB)∧κc(ri)θκc(s j)}.

2.6.3 Client-Server Split

Aggregate functions count, count distinct, group by, sum, average, maximum, minimum, and sort
compute key figures over a whole relation. The encrypted processing of aggregation results is
supported on the server in single user mode [PRZB11]. In 2.6.1 and 2.6.2, we introduced the
server-side execution of count and count distinct in multi user mode.

Now, we explain the execution of the rest of these aggregate functions. Introducing virtual
relations to specify access restrictions, aggregate functions cannot be executed over the whole
relation as this relation is split in different virtual relations encrypted with different keys. In order
to evaluate an aggregate function, a user has to process the aggregate function over all virtual
relations she is allowed to access. These virtual relations are encrypted with different encryption
keys. Typically, the evaluation of aggregation results requires that all invoked virtual relations are
encrypted with a shared encryption key.

One possible solution is a proxy re-encryption on the server to compute the aggregation results.
Such proxy re-encryption schemes must be suitable for the encryption scheme required by the
aggregate function. Unfortunately, some can be hard to construct [PRZB11] while others require
notable computational effort and execution time [GH11].

Another naive solution is to process the aggregate functions on the client. This generates
significant data traffic as all data have to be transferred to the client. On the client, this data
consumes storage capacity and computational power in order to evaluate the aggregate function.

This in mind, we opt for a client-server split where a significant amount of computational
effort is executed over encrypted data and small encrypted partial result sets are issued to the
client where they are decrypted and further processed to receive the final result. Therefore, we
split the execution of these aggregate functions between server and client as follows:

• On the server: Computation of the encrypted results for each virtual relation. These are the
partial results.

• On the client: Decryption of the partial results and computation of a function FAgg which
takes as input the unencrypted partial results and computes the final result depending on the
underlying aggregate function.
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To illustrate this approach, consider an aggregate function F(Ai) which computes maximum, min-
imum, average, sum, or sort over an attribute Ai. Let β = (A1, . . . ,Ak) be an attribute list to group
the results. If β = /0, then there is no group-by function defined. An aggregate function β γF(Ai)(R)
on a relation R issued by Alice is executed over the virtual relations RA and RAB. Therefore, the
attribute list β is encrypted with key r_a as κa(β ) and with key r_ab as κr_ab(β ). The function
F(Ai) is also encrypted with key r_a as F(κa(Ai)) and with key ab as F(κr_ab(Ai)). We compute
the partial result for virtual relation RA on the server as

κr_a(Res(RA)) =κr_a(β ) γF(κr_a(Ai))κr_a(RA)

and the partial result for virtual relation RAB as

κr_ab(Res(RAB)) =κr_ab(β ) γF(κr_ab(Ai))κr_ab(RAB)

The partial results κr_a(Res(RA)) and κr_ab(Res(RAB)) are sent to the client where they are de-
crypted. On the client, we compute the function FAgg which takes as input the unencrypted partial
results. It is

FAgg = Agg(Res(RA),Res(RAB))

the final result.
Depending on the underlying aggregate function, we define FAgg differently. We describe this

in the rest of this subsection.

Maximum/Minimum. It is

Res(RA) =Max(RA)

Res(RAB) =Max(RAB)

and we compute FAgg = FMax as

FMax = Max(Max(RA),Max(RAB)).

This also holds for the computation of the minimum.

Sum. It is Res(RA) = Sum(RA) and Res(RAB) = Sum(RAB) and we compute FAgg =FSum on the
client as

FSum = Sum(RA)+Sum(RAB).

Average. The aggregate function average is replaced by the aggregate functions sum and count.
This provides the partial results

Res(RA) = {Sum(RA),Count(RA)}
Res(RAB) = {Sum(RAB),Count(RAB)}.

We compute FAgg = FAvg on the client as

FAvg =
Sum(RA)+Sum(RAB)

Count(RA)+Count(RAB)
.

ESCUDO-CLOUD Deliverable D3.3



Section 2.6: Query Processing over an Encrypted Relational Algebra 45

Sort. It is Res(RA) = Sort(RA) and Res(RAB) = Sort(RAB), each a sorted list. We compute
FAgg = FSort on the client as

FSort = Merge_sorted_lists(Sort(RA),Sort(RAB)).

Group By. The aggregate function group by provides as partial results the grouped results for
virtual relations RA and RAB. There are

Res(RA) = {Agg(RA) grouped by RA.Ai}
Res(RAB) = {Agg(RAB) grouped by RAB.Ai}.

On the client, we process the partial results Res(RA) and Res(RAB) as follows. If RA.Ai = RAB.Ai,
we merge these groups of RA and RAB and include it in the final result. If RA.Ai 6= RAB.Ai, we
overtake the partial result in the final result.

2.6.4 Multi User Algorithm

We apply these introduced techniques and present a multi user algorithm allowing a user to execute
a query (i.e. a combination of the presented relational operations) over a set of access restricted
relations.

It takes as input a user id and an unencrypted query and returns the final result of the query as
output. The user id is an identifier unique for each user. A query is a combination of relational
operations over one or more relations. The final result is the decrypted result of the query.

As before consider a relation R with attributes A1, . . . ,An and a relation S with attributes
B1, . . . ,Bm. The data owner splits relation R in virtual relations R1, . . . ,Rk encrypted with keys
v1, . . . ,vk respectively. She also splits relation S in virtual relations S1, . . . ,Sl which are encrypted
with keys w1, . . . ,wl respectively. The data owner handles n user. Each user is equipped with a
user id. The data owner defines the user group mapping where each user id is related to its user
groups. She also defines the virtual relation mapping where each pair of user group and relation
is assigned to a virtual relation. Here, we focus on a user which is member in i+ j different user
groups. For relation R, the user is member in user groups which are assigned to virtual relations
κv1(R1), . . . ,κvi(Ri) and for relation S, the user is member in user groups which are assigned to
virtual relations κw1(S1), . . . ,κw j(S j).

With respect to the specific query, the multi user algorithm requires six steps:

1. Look Up: Determine the required virtual relations given query and user id and check if the
required attributes are encrypted with the necessary encryption layer.

2. Proxy Re-Encryption: Initiate a proxy re-encryption if the query contains count distinct,
equi join, or set difference.

3. Query Encryption: Encrypt all elements of the rewritten query like attributes, conditions,
attribute list.

4. Query Rewriting: Adapt the query to be applied on virtual relations. Therefore, we present
a query rewriting algorithm in Algorithm 1.

5. Server-side Execution: Process the rewritten query over encrypted data and return the en-
crypted results to the client.
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6. Client-side Execution: Decrypt the returned results and do further processing if required.

We now discuss the details of these steps given an arbitrary query and a user id.

Look Up. ENKI Query Adapter checks the user group mapping to identify all user groups con-
taining this user id. Given these user groups and the relation(s) contained in the query, it deter-
mines all virtual relations for each pair of user group and relation(s) in the virtual relation mapping.

Proxy Re-Encryption. If the query contains equi-join, a set difference, or a count distinct, an
UDF adjusts the keys of all involved relations to a temporary key c.

Query Encryption. ENKI Query Adapter encrypts all attributes. If there exists a condition aθb
with a, b attributes, then it encrypts the attributes a and b of relations accessible by this user with
the same key c. If a is an attribute and b is a constant, it encrypts aθb with all keys v1, . . . ,vi.
The attribute list β = Ai(1) , . . . ,Ai(k) of a projection or an aggregate function is encrypted with the
keys v1, . . . ,vi of the accessible relations R1, . . . ,Ri of this user. This step encrypts the aggregate
function F(Ai) with key v1, . . . ,vi.

Query Rewriting. ENKI Query Adapter includes a query rewriting algorithm that modifies the
original query to be executable over the required virtual relations

κv1(R1), . . . ,κviRi and κw1(S1), . . . ,κw j(S j).

We describe the details of this algorithm in Algorithm 1. It takes as input the query Q which
can contain one or more unary or binary operations over relation R (and relation S). It returns a
rewritten query sQ to be executed on the server and in some cases also a rewritten query cQ to be
executed on the client.

Server-side Execution. The server executes the rewritten, encrypted query sQ and returns the
encrypted results to the client. If client-side processing is necessary, the server also returns a query
cQ.

Client-side Execution. The client receives the encrypted results and decrypts them. If the client
does not receive a query cQ, the query processing is finished. If the client receives a query cQ, it
executes the query over the decrypted partial results receiving the final result.

2.7 Key Management and Dynamic Access Control Policies

ENKI enforces access policies through selective encryption leading to different keys for each user.
However, access policies (and thereby keys) might change. This is that the data owner grants
access rights to new users or revokes access rights from others. Adding or deleting users of a user
group can be formalized as changes in a user hierarchy.

Definition 2.7.1. Given the set of users S = {s1, . . . ,sn} a user hierarchy U is a pair (P∗(S),≺)
where P∗(S) is the powerset without the empty set of S and ≺ is a partial order such that for all
sets of users pi, p j ∈P∗(S), pi ≺ p j if p j ⊆ pi for all i, j = {1, . . .2n−1}.
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Algorithm 1 Query Rewriting Algorithm
Require: κv1(R1), . . . ,κviRi, (κw1(S1), . . . ,κw j(S j)): virtual relations

Q: query containing one or more relational operations ∆

1: for all avg ∈ Q do
2: rewrite β γAvg(Ai)(R) as Qk =β γSum,Count(Ai)(R)
3: generate cQ
4: end for
5: for all ρ ∈ Q do
6: rewrite ρ(R) as Qt = ρ(κvk(Rk)) for all k, t = 1, . . . , i
7: end for
8: for all unary σ ∈ Q do
9: rewrite Qt = σ(R) as Qt = σ(κvk(Rk)) for all k, t = 1, . . . , i

10: end for
11: for all π ∈ Q do
12: rewrite π(R) as Qt = π(Rk) for all k, t = 1, . . . , i
13: end for
14: for all max ∨ min ∨ sum ∈ Q do
15: rewrite γF(R.Ai)∆R as

Qt = γF(Rk.Ai)∆(κvk(Rk)) for all k, t = 1, . . . , i
16: if ∃cQ then
17: modify cQ
18: else
19: generate cQ
20: end if
21: end for
22: for all ∪∨\∨×∨ ./∈ Q do
23: rewrite ∆(R,S) as Qt = ∆(Rk,Sl) for all k = 1, . . . , i, l = 1, . . . , j, and t = 1, . . . , i∗ j
24: end for
25: for all sort ∨ group ∈ Q do
26: rewrite β γF(R.Ai)∆(Qt) as β γF(Rk.Ai)∆(Qt)

for all t = 1, . . . , i in case Q unary or t = 1, . . . , i∗ j in case Q binary
27: if ∃cQ then
28: modify cQ
29: else
30: generate cQ
31: end if
32: end for
33: if Q unary then
34: rewrite ∆R as sQ =

⋃
t=1,...,i Qt

35: end if
36: if Q binary then
37: rewrite ∆(R,S) as sQ =

⋃
t=1,...,i∗ j Qt

38: end if
39: for all count distinct ∨ count ∈ Q do
40: rewrite β γF(Rk.Ai)(sQ) as sQ =β γF(Rk.Ai)sQ
41: end for
42: return sQ, (cQ)
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All user groups pi ∈P∗(S) with a non-empty object set such that

O(pi) = {o|o ∈ O∧QSo = pi} 6= /0

are called busy user groups. These are user groups granted access to a set of objects specified by
an access policy. These busy user groups might also change when adding or deleting users.

Granting Access Right. Adding a new user sn+1 changes the original user hierarchy U by
adding sets of users. These are a set with only one element sn+1 and sets pi ∪ {sn+1} for all
i = {1, . . .2n− 1}. The result is a new user hierarchy. Consider all busy user groups porig

i in the
original user hierarchy. Then for each user group porig

i , the new hierarchy contains a user group
pnew

i = porig
i and a user group porig

i ∪{sn+1}.
Consider two cases: First, a busy user group porig

i evolves to a non busy user group pnew
i in the

new user hierarchy and user group porig
i ∪{sn+1} is busy in the new user hierarchy. This is that the

new user sn+1 has access to all objects accessible by user group porig
i . It is

O(porig
i ) = O(porig

i ∪{sn+1}).

The data owner shares the key of user group porig
i with user sn+1.

Second, a busy user group porig
i of the original hierarchy is still a busy user group pnew

i in the
new user hierarchy and user group porig

i ∪{sn+1} is also busy. This is that the new user sn+1 has
been granted access to a subset of objects accessible for user group porig

i . The object set O(porig
i )

is split such that
O(porig

i ) = O(pnew
i )∪O(porig

i ∪{sn+1})

with
O(pnew

i )∩O(porig
i ∪{sn+1}) = /0.

The data owner downloads object set O(porig
i ∪{sn+1}) and re-encrypts it with a new key.

Revoking Access Right. We differentiate three scenarios where access rights are revoked from
a user. First, a user is revoked from all access rights. Second, a user is revoked from a user group.
Third, a user is revoked from certain objects of a user group.

Consider the first scenario where all access rights of a user are revoked. The original user
hierarchy changes as the set of users S is reduced by one element sn. This is to reduce

P∗(S ) = P∗(S \sn)∪ (P(S \sn)∪ sn)

to P∗(S \sn) resulting in a new user hierarchy. Consider all busy user groups porig
i ∪{sn} in the

original user hierarchy. These user groups are deleted from the new hierarchy. Their object sets
are then accessible by the user groups pnew

i = porig
i and merged with the respective object sets as

O(pnew
i ) = O(porig

i ∪{sn})∪O(porig
i ).

The data owner downloads all object sets O(porig
i ∪{sn}) and re-encrypts them with the respective

keys of user groups porig
i .

Consider the second scenario where the user is revoked from a user group. This does not
change the user hierarchy, but changes the busy user groups. Consider the respective busy user
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group porig
i ∪{sn} in the original user hierarchy. It is non busy in the new hierarchy. Its object set

is then accessible by user group pnew
i = porig

i and merged with the respective object set as

O(pnew
i ) = O(porig

i ∪{sn})∪O(porig
i ).

The data owner downloads object set O(porig
i ∪{sn}) and re-encrypts it with the key of user group

porig
i .

Consider the third scenario where the user is revoked from access of certain objects accessible
by a user group. Consider the respective busy user group porig

i ∪ sn in the original hierarchy.
Revoking user sn from accessing certain objects requires to split O(porig

i ∪{sn}) as

O(porig
i ∪{sn}) = O(pnew

i ∪{sn})∪O(pnew
i )

with

O(pnew
i ∪{sn})∩O(pnew

i ) 6= /0.

This is that user sn is granted access to object set O(pnew
i ∪ {sn}) but cannot access object set

O(pnew
i ). This results in two busy user groups (pnew

i ∪{sn}) and pnew
i . Note that O(pnew

i ) might also
contain additional tuples previously available for the user group pold

i . The data owner downloads
object set O(pnew

i ) and re-encrypts it with the key of user group pold
i .

The data owner updates the user group and virtual relation mapping according to the changes of
user hierarchy and busy user groups to keep track of the changing users, user groups, and virtual
relations. She also distributes the encryption keys to the respective users while updating their key
stores when they are logged in.

2.8 Implementation

We implemented ENKI as the extension of an existing single user solution to support the multi
user setting. We use a modified JDBC driver for the single user mode which receives unencrypted
SQL queries, modifies their operator tree, performs the onion selection, and encrypts the results.

As described in Figure 2.1, ENKI is an additional modification of the JDBC driver to per-
form query rewriting for the multi user mode and provides a client add-on to execute the post-
processing. We handle the client-side using a SQLite database. The queries are executed on an
unmodified SAP HANA database [FML+12] where UDFs execute cryptographic operations. We
implemented DETPRE in C using pbc and gmp libraries providing the mathematical operations
underlying pairing based encryption [Lyn07, GG14].

2.9 Experimental Evaluation

We evaluate functionality and performance of ENKI on the TPC-C benchmark and three real
world application scenarios described in Subsection 2.9.1. We explain our experimental setup
in Subsection 2.9.2. In Subsection 2.9.3, we analyze which types of queries and access policies
can be supported. In Subsection 2.9.4, we evaluate the performance overhead consumed by the
necessary modifications of ENKI.
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Figure 2.4: TPC-C: Query Execution Time for Single and Multi User Mode
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Figure 2.5: LSM: Post-Processing for Multi User Mode given n = 50, . . . ,400 user groups
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and tertiary relation given n =

5, . . . ,100 user groups
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Rewriting for unary, binary,
and tertiary relations given n =

1, . . . ,256 user groups
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Query Type IS-H LSM TPC-C SFIN
Equal x x x x
Range x x x

Equal Join x x x
Range Join
Aggregate x x x x

Table 2.1: Overview of the query types in the use cases

2.9.1 Application Scenarios

IS-H. IS-H is the healthcare management solution of SAP for patient management. In our ob-
served query trace, we see 7 tables with 477 columns in total. As all tables contain personal
information, we assume that all tables must be treated confidential. The users accessing this ap-
plication are typically associated to different roles which are sets of organizational units. Patient
information is associated with the organizational units of her encounters. To protect sensitive pa-
tient information, access policies prevent user from accessing medical details of patients if they
are not associated to the set of organizational units of the patient.

LSM. LSM is an internal SAP solution which supports facility management to plan resources.
Peers on a certain SAP management level include confidential planning information for their area.
The peers are only allowed to access the data they committed themselves but not the data of
other peers. Facility management has access to all data and calculates figures for future resource
planning which are sensitive. The application contains of 25 tables and 173 columns.

TPC-C. TPC-C is an OLTP benchmark consisting of 9 tables and 92 columns. We assume that
all tables and columns are sensitive and define an access policy for a two user scenario where each
user has certain private data and other data is shared.

SFIN. Simplified Financials (SFIN) is part of SAP ERP application relying on SAP HANA as a
database backend. In our use case, this application analyzes consumers’ data sets consisting of 9
tables and 741 columns. We assume that all tables and columns are sensitive and define an access
policy for a two user scenario where each user has certain private data and other data is shared.

2.9.2 Experimental Setup

Our experimental setup consists of a client running the modified JDBC proxy and a SQLite data-
base and a server running an unmodified SAP HANA database. The client has 16 GB RAM and
2-core 2.8GH processor. The HANA database server has 252 GByte RAM and 8-core 2.6 GHz
processor.

2.9.3 Functional Evaluation

To evaluate which queries and access policies ENKI can support, we analyzed the applications
described in Subsection 2.9.1.
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Queries. Table 2.1 shows the issued query types for each application. ENKI supports all ob-
served queries including equal and order selections, equal joins, aggregations and combinations
of these. In addition, ENKI also supports update, insert, and delete statements. Therefore, ENKI
provides enhanced functionalities compared to existing solutions [YBDD09, PRZB11, PZ13].
ENKI cannot support the execution of range joins on the database server if a range join includes
columns of different virtual relations encrypted with different keys. To our knowledge, there is no
proxy re-encryption scheme for OPE encryption available. Therefore, ENKI would execute range
joins only on client-side, however we consider this as acceptable as we did not observe a range
join in any of our four applications.

Access Policies. ENKI supports the access policies specified for the IS-H and LSM application
as its tuple-wise access restrictions on tables match well with the described requirements. This
tuple-wise access enables the implementation of most of the access policies specified by autho-
rization views [RMSR04]. An exception are those policies which only allow aggregated views on
columns e.g. a user is only allowed to see the average of all attribute values of a column but not
the unaggregated attribute values.

2.9.4 Performance Evaluation

We investigate two questions in order to evaluate the performance of ENKI:

• What is the performance penalty of our algorithm for multi user mode compared to single
user mode?

• What is the performance impact of our proxy re-encryption scheme?

In the two experiments for the first question we assume that proxy re-encryption has already taken
place.

TPC-C. We measure the execution time of the 20 select queries of the TPC-C benchmark and
compare the query execution time of single and multi user mode. Table 2.1 shows the types of
queries in TPC-C. For single user mode we execute the encrypted queries as [PRZB11], i.e. with-
out any access policy. For the multi user mode we use the same access policy as in the examples
in this paper: there are two users and three user groups. Each user has access to her private data
and both user have access to shared data. In order to execute a multi user mode query, we need to
rewrite, execute, and post-process. We measure the time of these steps and compare their total to
the execution time of the single user mode. Figure 2.4 presents the results for the 20 TPC-C. The
multi user mode incurs an average overhead of 36.98% (median overhead of 33.797%) compared
to the single user mode. This is an absolute performance penalty of 0.6181 ms on average.
The total query execution time of the multi user mode is composed of three parts: query rewriting,
query execution, and post-processing. On average query rewriting accounts for 3% of the total,
query execution for 86%, and post-processing for 11%.

LSM. We measure the execution time of the queries of the LSM application over an increasing
number of user groups. The LSM application specifies the following access policy: there are n
users and n user groups. Each user group is unique for one user. n−1 users can only access their
private data. One user has access to all data sets. This user performs unary relational operations
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with aggregations on these data. With each additional user this user participates in an additional
user group. We analyze the time of the three steps of the multi user mode algorithm over an
increasing number of user groups. Given 50 user under this access policy, then a user incurs an
average query execution time of 209.51 ms issuing a query over 50 virtual relations.

Query Rewriting. Figure 2.6 shows the time for rewriting a query over a linearly increasing
number of virtual relations of k = 5, . . . ,100. We measure the time for unary, binary, and tertiary
relational operations. Figure 2.6 confirms that the effort is O(k) for unary operations, O(k2)

for binary operations, and O(k3) for tertiary operations. Hence query rewriting depends on the
specified access policy, since it defines the number of virtual relations and also on the number of
operators in the query (i.e. unary, binary, or tertiary).
In order to further investigate the impact of the access policy, we bound the maximum number of
user groups given n users where one user can participate in. For n users there are at 2n− 1 user
groups. One user can participate in a maximum of 2n−1 user groups. For our measurement we
use 1, . . .9 users such that a user may participate in 1, . . . ,256 user groups. We depict the query
rewriting time for unary, binary, and tertiary queries in Figure 2.7 on a logarithmic scale.
Theoretically, the time scales exponentially. However, we have neither observed such an access
policy in a real world application nor have we found a case in the literature [KTZ11]. In accordance
with current literature, we even assume that the number of actual user groups is smaller than
the number of users [KTZ11]. This implies that the LSM application is indeed a representative
scenario as the number of user groups equals the number of users.

Query Execution. Figure 2.8 presents the time to execute unary relational operations with ag-
gregation functions over an increasing number of user groups n= 50, . . . ,400. The query execution
time in single user mode is nearly constant as the same query is only executed on a growing set
of data. In contrast in multi user mode, each additional user adds one more user group. Hence
the query expands by an additional subquery for the virtual relation. This effort is reflected by the
execution time ranging from 0.196 s for 50 user groups to 1.5s for 400 user groups. We conclude
that also the query execution time depends on the specified access policies.

Post-Processing. Figure 2.5 shows the effort to post-process unary relational operations includ-
ing aggregation functions over an increasing number of user groups n = 50, . . . ,400. These num-
bers contain the computational time for client-server-split as well as the necessary merge of the
result sets on the client. The overhead for post-processing (which is not required in single user
mode) is moderately growing up to 68.449 ms for 400 user groups. This is expected, since com-
putation of maximum, minimum, and sum require k− 1 operations on the client and computation
of average requires 2k−1 operations. The time to compute sort depends on the number of virtual
relations k, but also on the maximum cardinality of all invoked virtual relations. It is O(m logk)
to merge k sorted lists with a total of m attribute values. The time to post-process the group by
operation is a merge of m groups of k virtual relations which is to the time to merge k sorted lists.
In addition, it is O(m−1) to aggregate the partial results if similar groups exists. We conclude a
similar dependency on the access policy as for query execution.
For the second performance question we conduct a third experiment.

Proxy Re-Encryption. We measure the execution time of our new encryption scheme DETPRE

used to process count distinct, set difference, and join securely over data encrypted with different
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DETPRE JOIN-ADJ
Encrypt 1.585956 ms 1.6058 ms
Token 0.0331148 ms 0.0014051 ms
PRE 1.019126 ms 0.000347 ms

Table 2.2: Microbenchmark of Encryption, Token Computation, and Proxy Re-Encryption of Det-
Prey and JOIN-ADJ [PRZB11] over 10.000 Iterations

keys in the multi user mode and compare it to the encryption scheme Join-Adj used in the single
user mode [PRZB11].
We present a micro benchmark in Table 2.2 which contains the time to compute the three al-
gorithms of the scheme: encryption, token computation, and proxy re-encryption. The time to
encrypt data is almost equal in both schemes with DETPRE consuming 1.5860 ms and Join-Adj
consuming 1.6058 ms. The computation of the token consumes 0.03311 ms compared to Join-Adj
with 0.0014 ms. The proxy re-encryption consumes 1.0191 ms in DETPRE and 0.0003 ms in Join-
Adj. This proxy re-encryption time multiplies with the cardinalities of all columns which have to
be proxy re-encrypted.
To minimize the time, it is possible to perform some computations in advance i.e. during the user
logs in. However, it is not possible to substitute DETPRE with Join-Adj in the multi user case as
proxy re-encryption in multi user mode which privacy-preserves data must be non-symmetric and
non-transitive.

2.10 Conclusions

This paper presented ENKI, a system for securely executing relational operations over encrypted,
access restricted data. ENKI introduces an encryption based access control model to enforce ac-
cess restrictions encrypting data with different access rights with different encryption keys. ENKI
uses query rewriting and post-processing to process relational operations over data encrypted with
different encryption keys. It protects data confidentiality in case of the relational operations count
distinct, set difference, or join by introducing a new privacy-preserving encryption scheme. The
evaluation shows that its performance depends on the specified access policy and relational oper-
ations. It achieves modest overhead for the select queries of the TPC-C benchmark and the LSM
use case.
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3. Integrity and Consistency for Cloud Object
Storage

Cloud services have turned remote computation into a commodity and enable convenient on-
line collaboration. However, they require that clients fully trust the service provider, in terms of
confidentiality, integrity, and availability. Towards reducing this dependency, we have introduced
a protocol for verification of integrity and consistency for cloud object storage (VICOS), which
enables a group of mutually trusting clients to detect data-integrity and consistency violations for
a cloud object-storage service [BCK15]. This protocol is aimed at services where multiple clients
cooperate on data stored remotely on a potentially misbehaving service. VICOS enforces the con-
sistency notion of fork-linearizability, supports wait-free client semantics for most operations, and
reduces the computation and communication overhead compared to previous protocols such as
SUNDR [CSS07], FAUST [CKS11], or Venus [SCC+10]. VICOS is based, in a generic way, on
any authenticated data structure. Moreover, its operations cover the hierarchical name space of a
cloud object store, supporting a real-world interface and not only a simplistic abstraction.

This chapter documents the progress of the project towards realizing, evaluating, and releasing
the prototype implementation of VICOS. The toolkit is available as open-source code on GitHub
at

https://github.com/ibm-research/vicos/

It has been documented in W3.1 [BC16].

3.1 State of the Art

3.1.1 Problem Description

For protecting remotely stored data, if there is only a single client, the client may locally keep a
short cryptographic hash value of the outsourced data. Later, this can be used to verify the integrity
of the data returned by the cloud storage service. However, with multiple disconnected clients, no
common synchronization, and no communication among the clients, neither hashing nor digital
signatures are sufficient by themselves. The reason is that a malicious or Byzantine server may
violate the consistency of the data, for example, by reordering or omitting properly authenticated
operations, so that the views of the storage state at different clients diverge. A malicious cloud
server may pretend to one set of clients that some operations by others simply did not occur. In
other words, freshness can be violated and the clients cannot detect such replay attacks until they
communicate directly. The problem is particularly relevant in cryptographic online voting and for
web certificate transparency [Lau14].
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The strongest achievable notion of consistency in this multi-client model is captured by fork-
linearizability, introduced by Mazières and Shasha [MS02]. A consistency and integrity verifica-
tion protocol may guarantee this notion by adding condensed data about the causal evolution of
the client’s views into their interaction with the server. This ensures that if the server creates only
a single discrepancy between the views of two clients, these clients may never observe operations
of each other afterwards. In other words, if the server ever lies to some clients and these clients
communicate later, they will immediately discover the violation. Hence, with only one check they
can verify a large number of past operations.

The goal of this work is to demonstrate a complete practical system that supports the optimal
consistency notion of fork-linearizability, provides wait-free semantics for all compatible client
operations, and has smaller overhead than previous protocols.

3.1.2 Background

Many previous systems providing data integrity for storage systems rely on trusted components.
Distributed file systems with cryptographic protection provide stronger notions of integrity and
consistency than given by VICOS; there are many examples for this, from early research pro-
totypes like FARSITE [ABC+02] or SiRiUS [GSMB03] to production file-systems today (e.g.,
IBM Spectrum Scale, http://www-03.ibm.com/systems/storage/spectrum/scale/). How-
ever, they rely on trusted directory services for freshness. Such a trusted coordinator is often
missing or considered to be impractical. Iris [SvDO12] relies on a trusted gateway appliance,
which mediates all requests between the clients and the untrusted cloud storage. Several recent
systems ensure data integrity with the help of trusted hardware, such as CATS [YC07], which of-
fers accountability based on an immutable public publishing medium, or A2M [CMSK07], which
assumes an append-only memory. They all require some form of global synchronization, usually
done by the trusted component, for critical metadata to ensure linearizability. In the absence of
such communication, as assumed here, they cannot protect consistency and prevent replay attacks.

In CloudProof [PLM+11], an object-storage protection system with accountable and proof-
based data integrity and consistency support, clients may verify the freshness of returned objects
with the help of the data owner. Its auditing proceeds in epochs; operations are verified only at the
end of each epoch and the detection may fail with some probability. Moreover, the clients need to
communicate directly with the owner of an object for establishing integrity and consistency.

Cryptographic integrity guarantees are of increasing interest for many diverse domains: Ver-
ena [KFP+16], for example, is a recent enhancement for web applications that involve database
queries and updates by multiple clients. It targets a patient database holding diagnostic data and
treatment information. In contrast to VICOS, however, it relies on a trusted server that supplies
hash values of data objects to clients during every operation.

The remainder of this section discusses related work without trusted components for synchro-
nization. With only one client, the classic solution for memory checking by Blum et al. [BEG+94]
provides data integrity through a hash tree and by storing its root at the client. Many systems have
exemplified this approach for remote file systems and for cloud storage (e.g., Athos [GPTT08]).

With authenticated data structures (ADS) [NN00, MND+04], the single-writer, multi-reader
model of remote storage can be authenticated, assuming there is a trusted and timely way to dis-
tribute authenticators from the writer to all readers. In practice, this approach is often taken for
software distribution, where new releases are posted to a repository and authenticated by broad-
casting hash values of the packages over a mailing list. AIP as introduced in [BCK15] represents
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one way to generalize ADS for multiple writers.
In the multi-client model, Mazières et al. [MS02, LKMS04] have introduced the notion of fork-

linearizability and implemented SUNDR, the first system to guarantee fork-linearizable views to
all clients. It detects integrity and consistency violations among all clients that become aware of
each other’s operations. The SUNDR system uses messages of size Ω(n2) for n clients [CSS07],
which might be expensive. The SUNDR prototype [LKMS04] description also claims to han-
dle multiple files and directory trees; however, the protocol description and guarantees are stated
informally only, so that it remains unclear whether it achieves fork-linearizability under all cir-
cumstances.

Several systems have already expanded the guarantees of fork-linearizability to different ap-
plications [FZFF10] and improved the general efficiency of protocols for achieving it [CSS07].
Others have explored aborting operations [MDSS09] or introduced weak fork-linearizability in
order to avoid blocking operations. In particular, SPORC [FZFF10], FAUST [CKS11], and
Venus [SCC+10] sacrifice full linearizability to avoid aborts and blocking, respectively, and achieve
weak fork-linearizability instead. The latter is a relaxation of fork-linearizability in which the most
recent operation of a client may violate atomicity.

The SPORC system [FZFF10] is a groupware collaboration service whose operations may
conflict with each other, but can be made to commute by applying a specific technique called
“operational transformations.” Through this mechanism, different execution orders still converge
to the same state; still SPORC achieves only weak fork-linearizability.

Furthermore, VICOS also reduces the communication overhead compared to past systems con-
siderably, since SUNDR, FAUST, and Venus all use messages of size Θ(n) or more with n clients,
whereas the message size in VICOS does not depend on n.

The BST protocol [WSS09] supports an encrypted remote database hosted by an untrusted
server that is accessed by multiple clients. Its consistency checking algorithm allows some com-
muting client operations to proceed concurrently; COP and ACOP [CO14] extend BST and also
guarantee fork-linearizability for arbitrary services run by a Byzantine server, going beyond data
storage services, and support wait-freedom for commuting operations. VICOS builds directly on
COP, but improves the efficiency by avoiding the local state copies at clients and by reducing the
computation and communication overhead. The main advantage is that clients can remain offline
between executing operations without stalling the protocol.

3.1.3 The ADS Itegrity Protocol (AIP)

Brandenburger et al. [BCK15] introduce the ADS integrity protocol (AIP), a generic protocol to
verify the integrity and consistency for any authenticated data structure (ADS) operated by a re-
mote untrusted server. It benefits from executing compatible operations concurrently. AIP extends
and improves upon the commutative-operation verification protocol (COP) and its authenticated
variant (ACOP) of Cachin and Ohrimenko [CO14]. For the completeness of this document, we
recall AIP here in detail.

The processing of one operation in AIP is structured into an active and a passive phase. The
active phase begins when the client invokes an operation and ends when the client completes it and
outputs a response; this takes one message roundtrip between the client and the server. Different
from past protocols, the client stays further involved with processing authentication data for this
operation during the passive phase, which is decoupled from the execution of further operations.

More precisely, when client Ci invokes an operation o ∈O , it sends a signed INVOKE message
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carrying o to the server S. The server assigns a global sequence number (t) to o and responds
with a REPLY message containing a list of pending operations, the response, an authenticator, and
auxiliary data needed by the client for verification. Operations are pending (for o) because they
have been started by other clients and S has ordered them before o, but S has not yet finished
processing them. We distinguish between pending-other operations, which have been invoked by
other clients, and pending-self operations, which Ci has executed before o.

After receiving the REPLY message, the client checks its content. In particular, if the pending-
other operations are compatible with o, then Ci verifies the pending-self operations including o
with the help of the authenticator; if they are correct, Ci proceeds and outputs the response im-
mediately. Along the way Ci verifies that all data received from S satisfies conditions to ensure
fork-linearizability. An operation that terminates like this is called successful; alternatively, when
the pending-other operations are not compatible with o, then o aborts. In this case, Ci returns
the symbol ABORT. In any case, the client subsequently commits o and sends a signed COMMIT

message to S (note that also aborted operations are committed in that sense). This step terminates
the active phase of the operation. The client may now invoke the next operation or retry o if it was
aborted.

Processing of o continues with the passive phase. At some (later) time, as soon as the operation
immediately preceding o in the assigned order has terminated its own passive phase, S sends an
UPDATE-AUTH message with auxiliary data and the authenticator of the preceding operation to Ci.
When Ci receives this, it validates the message content and verifies the execution of o unless o
had been aborted. Using the methods of the ADS, the client now computes and signs a new
authenticator that it sends to S in a COMMIT-AUTH message. We say that Ci authenticates o at this
time. When S receives this message, then it applies o by executing it on the state and stores the
corresponding authenticator; this completes the passive phase of o.

Note that the server may receive COMMIT messages in an order that differs from the one
of the globally assigned sequence numbers due to asynchrony. Still, the authentication steps in
the passive phases of the different operations must proceed according to the assigned operation
order. For this reason, the server maintains a second sequence number (b), which indicates the
last authenticated operation that the server has applied to its state. Hence, S buffers the incoming
COMMIT messages and runs the passive phases sequentially in the assigned order.

For ensuring consistency, every client needs to know about all operations that the server has
executed. Therefore, when S responds to the invocation of an operation by Ci, it includes in the
REPLY message a summary (including the corresponding signatures) of all those operations that
Ci has missed since it last executed an operation. Prior to committing o, the client verifies these
operations and thereby clears them.

Notation. The protocol is shown in Alg. 1–3 and formulated reactively. The clients and the
server are state machines whose actions are triggered by events such as receiving messages. An
ordered list with elements e1,e2, . . . ,ek is denoted by E = 〈e1,e2, . . . ,ek〉; the element with index j
may be accessed as E[ j]. We also use maps that operate as associative arrays and store values
under unique keys. A value v is stored in a map H by assigning it to a key k, denoted by H[k]← v;
for non-assigned keys, the map returns ⊥. The symbol ‖ denotes the concatenation of bit strings.
The assert statement, parameterized by a condition, catches an error and immediately terminates
the protocol when the condition is false. Clients use this to signal that the server misbehaved.
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Data structures. This section describes the data structures maintained by every client and by the
server. For simplicity, the pseudo code does not describe garbage collection, but we note where
this is possible.

Every client Ci (Alg. 1) stores the sequence number of its last cleared operation in a variable c.
The hash chain H represents the condensed view that Ci has of the sequence of all operations. It
is computed over the sequence of all applied operations and the sequence of pending operations
announced by S. Formally, H is a map indexed by operation sequence number; an entry H[l] is
equal to hash(H[l− 1]‖o‖l‖ j) when the l-th operation o is executed by C j, with H[0] = NULL.
Variable Z is a map that represents the status (SUCCESS or ABORT) of every operation, according
to the result of the test for compatibility. The client only needs the entries in H and Z with indices
greater than c and may garbage-collect older entries. Finally, Ci uses a variable u that is set to o
whenever Ci has invoked operation o but not yet completed it; otherwise u is ⊥.

The server (Alg. 3) maintains the sequence number of the most recently invoked operation in
a counter t. In addition to that, the counter b contains the sequence number of the most recently
applied operation and governs the authentication of operations in the passive phase. Every invoked
operation is stored in a map I and every committed operation in a map O; both maps are indexed
by sequence number. The server only needs the entries in I with sequence numbers greater than b.
An entry in O, at a sequence number b or greater, has to be stored until every client has committed
some operation with a higher sequence number and may be removed later. Most importantly,
the server keeps the state s of the ADS for the implemented functionality F , which reflects all
successful operations up to sequence number b. In contrast to COP [CO14] and SPORC [FZFF10],
where every client maintains a complete copy of the state, here only the server stores that state.
Moreover, S stores the authenticator for every operation in a map A indexed by sequence number.

The protocol in detail. This section describes the ADS integrity protocol (AIP) as shown in
Alg. 1–3. AIP is parameterized by an ADS and a functionality F that specifies its operations
through queryF , authexecF , and refreshF . The client invokes AIP with an ADS-operation o by
calling aip-invoke(o); it completes when AIP executes return at the end of the handler for the RE-
PLY message. This ends the active phase of AIP, and the passive phase continues asynchronously
in the background.

ACTIVE PHASE: When client Ci invokes an operation o, it computes an INVOKE-signature τ over o
and i; this proves to other clients that Ci has invoked o. Then Ci stores o in u and sends an INVOKE

message with o and τ to the server.

Upon receiving an INVOKE message with o, the server increments the sequence number t,
assigns it to o, and assembles the REPLY message for Ci. First, S stores o and the accompanying
signature in I[t]; the value t is also called the position of o. The pending operations for o, as-
signed to ω , are found in I[b+1], . . . , I[t], i.e., starting with the oldest non-applied operation, and
include o. In order to compute the response and the auxiliary data for o from the correct state,
the server must then extract the successful pending-self operations µ of Ci, using the following
method:
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function separate-pending(i,ω)

µ ← 〈〉; γ ← 〈〉
for k = 1, . . . , length(ω) do

(o′, ·, j)← ω[k]
if j = i then

if k = length(ω)∨ status of o′ is SUCCESS then
µ ← µ ◦ 〈o′〉 // see text how to get status of o′

else if j 6= i then
γ ← γ ◦ 〈o′〉

return (µ,γ)

This method is common to the server and the clients. Note that µ includes the current operation
(which appears at the end of ω) but not the aborted operations of Ci. The server finds the status of
a pending-self operation o′ of Ci in O[b+k] (except for o itself, obviously) because Ci has already
committed o′ prior to invoking o and because the messages between Ci and S are FIFO-ordered.
On the other hand, Ci retrieves the status of o′ from Z[b+ k].

Then, S computes the response r and auxiliary data σo by calling queryF(s,µ) from the ADS
for F ; the response, therefore, takes into account the state reached after the successful pending-self
operations of Ci but excludes any pending-other operations present in ω . However, the client will
only execute o and output r when γ is compatible with o and, therefore, Ci is guaranteed a view in
which the operations of γ occur after o. This will ensure fork-linearizability. The REPLY message
to Ci also includes A[b] containing the authenticator and its AUTH-signature, for the operation with
sequence number b. The client passes these to authexecF of µ for verifying the correctness of
the response. Furthermore, the REPLY message contains δ , the list of all operations that have
been authenticated since Ci’s last operation. In particular, when c is the sequence number from
the INVOKE message, δ contains the operations at sequence numbers c+ 1, . . . ,b; when c = b,
however, δ still contains O[b].

After receiving the REPLY message from S, the client (1) processes and clears the authenticated
operations in δ , (2) verifies the pending operations in ω , and (3) verifies that r is the correct
response for o. These steps are explained next.

For verifying and processing δ and the last signed authenticator in α , client Ci calls a function
check-view and verifies and/or extends the hash chain for every operation and verifies the corre-
sponding COMMIT-signature. In particular, this ensures for any operation which has been pending
for Ci and must be cleared, that the same operation was also authenticated by its originator. Finally,
Ci also checks the AUTH-signature on the authenticator a, which is contained in α . If successful,
all operations in δ are cleared and Ci’s operation counter c is advanced to the position of the last
operation in δ . (The check for b = c ensures that δ contains at least one operation at position c.)

The client continues in check-pending by verifying that the pending operations are announced
correctly: for every operation in ω , it determines the sequence number l, verifies the corresponding
INVOKE-signature τ , and checks the hash chain entry H[l]. If there is no entry in H for l, then
Ci computes the new entry from o, l, j, and H[l−1]; otherwise, Ci verifies that the existing entry
matches the expected value. If this validation succeeds, it means the operation is consistent with a
pending operation sent previously by S. After iterating through the pending operations, the client
checks also that the last operation in ω is indeed its own current operation o.

Next, Ci invokes separate-pending to extract µ and γ from ω (see earlier). Then, Ci checks
whether γ is compatible with u (the last invoked operation). If yes, Ci calls the ADS opera-
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Algorithm 1 ADS integrity protocol (AIP) for client Ci

state
c ∈ N0: sequence number of last cleared operation, initially 0
H : N0→{0,1}∗: the hash chain, initially only H[0] =⊥
Z : N0→Z : status map, initially empty
u ∈ O ∪{⊥}: current operation or ⊥ if none, initially ⊥

function aip-invoke(o)
u← o
τ ← signi(INVOKE‖o‖i)
send message [INVOKE,o,τ,c] to S

upon receiving message [REPLY,δ ,b,α,ω, t,r,σo] from S do
(a,ψ)← α

check-view(δ ,b,a,ψ)
check-pending(ω)
(µ,γ)← separate-pending(i,ω)

t← b+ length(ω)

if compatibleF(γ,u) then
(·, ·,v)← authexecF(µ,a,r,σo)

assert v
Z[t]← SUCCESS

else
r← ABORT

Z[t]← ABORT

φ ← signi(COMMIT‖t‖u‖i‖Z[t]‖H[t])
send message [COMMIT,u, t,Z[t],φ ] to S
u←⊥
return r // response of operation aip-invoke(o)

upon recv. msg. [UPDATE-AUTH,o,r,σo,φ ,q,δ ,α] from S do
assert verifyi(φ ,COMMIT‖q‖o‖i‖Z[q]‖H[q])
(oδ , ·, ·, ·, j)← δ

(a,ψ)← α

assert verify j(ψ,AUTH‖oδ‖q−1‖H[q−1]‖a)
if Z[q] = SUCCESS then

(a′,σ ′o,v)← authexecF(o,a,r,σo)

assert v
else

(a′,σ ′0)← (a,⊥)
ψ ′← signi(AUTH‖o‖q‖H[q]‖a′)
send message [COMMIT-AUTH,a′,σ ′o,ψ

′] to S
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Algorithm 2 ADS integrity protocol (AIP) for client Ci, continued
function extend-chain(o, l, j)

if H[l] =⊥ then
H[l]← hash(H[l−1]‖o‖l‖ j) // extend by one

else if H[l] 6= hash(H[l−1]‖o‖l‖ j) then
return FALSE // server replies are inconsistent

return TRUE

function check-view(δ ,b,a,ψ)

assert length(δ )≥ 1
if b = c then d← c−1 else d← c
for k = 1, . . . , length(δ ) do

l← d + k
(o,z,φ , j)← δ [k]
assert extend-chain(o, l, j)
assert verify j(φ ,COMMIT‖l‖o‖ j‖z‖H[l])

assert verify j(ψ,AUTH‖o‖b‖H[b]‖a) // variables o and j keep their values
c← d + length(δ ) // all operations in δ have been cleared

function check-pending(ω)

assert length(ω)≥ 1
for k = 1, . . . , length(ω) do

l← c+ k
(o,τ, j)← ω[k]
assert extend-chain(o, l, j)∧verify j(τ, INVOKE‖o‖ j)

assert o = u∧ j = i // variables o and j keep their values

tion authexecF(µ,a,r,σo) for verifying that applying the operations in µ yields r as the response
(recall that µ includes o at the end). The goal of this step is only to check the correctness of the
response, and the authenticator and auxiliary data output by authexecF are ignored. Finally, Ci

commits o by generating a COMMIT-signature over t, the sequence number of o, its status, and
its hash chain entry, sends a COMMIT message (with t, the operation, and the signature) to S, and
outputs the response r.

PASSIVE PHASE: The server stores the content of all incoming COMMIT messages in O and pro-
cesses them in the order of their sequence numbers, indicated by b. When an operation with se-
quence number b+1 has been committed but not yet authenticated by the client and applied by S
(i.e., upon O[b+1] 6=⊥∧A[b+1] =⊥), the server uses queryF to compute the response r and to
extract the auxiliary data σo from the current state s. It sends this in an UPDATE-AUTH message to
Ci, also including the operation at position b (from O[b]) and its authenticator (taken from A[b]),
which have been computed before. These values allow the client to verify the authenticity of the
response for the operation at position b+1.

The client Ci then receives this UPDATE-AUTH message (for o and sequence number q), and
first validates the message contents. In particular, Ci verifies that the authenticator a is covered by
a valid AUTH-signature by client C j with sequence number q−1, using Ci’s hash chain entry H[q−
1].

Next, if o was not aborted, i.e., Z[q] = SUCCESS, the client invokes authexecF to verify that
the auxiliary data and the response are correct, and to generate new auxiliary data s′o and a new

ESCUDO-CLOUD Deliverable D3.3



Section 3.1: State of the Art 63

Algorithm 3 ADS integrity protocol (AIP) for server S
state

t ∈ N0: seqno. of last invoked op., initially 0
b ∈ N0: seqno. of last applied op., initially 0
I : N→ O×{0,1}∗×N: invoked ops., initially empty
O : N→ O×{0,1}∗×Z ×{0,1}∗×N: committed ops., initially empty
A : N0→{0,1}∗×{0,1}∗: authenticators, init. A[0] = a0

s ∈ {0,1}∗: state of the service, initially s = s0

upon receiving message [INVOKE,o,τ,c] from Ci do
t← t +1
I[t]← (o,τ, i)
if b = c then δ ← 〈O[b]〉 else δ ← 〈O[c+1], . . . ,O[b]〉
ω ← 〈I[b+1], I[b+2], . . . , I[t]〉 // all pending operations
(µ, ·)← separate-pending(i,ω)

(r,σo)← queryF(s,µ)
send message [REPLY,δ ,b,A[b],ω, t,r,σo] to Ci

upon receiving message [COMMIT,o,q,z,φ ] from Ci do
O[q]← (o,z,φ , i)

upon O[b+1] 6=⊥∧A[b+1] =⊥ do
(o,z,φ , j)← O[b+1]
if z = SUCCESS then

(r,σo)← queryF(s,o)
else

(r,σo)← (⊥,⊥)
send msg. [UPDATE-AUTH,o,r,σo,φ ,b+1,O[b],A[b]] to C j

upon receiving message [COMMIT-AUTH,a,σo,ψ] from Ci do
b← b+1
A[b]← (a,ψ)

(o,z, ·, ·)← O[b]
if z = SUCCESS then

s← refreshF(s,o,σo)

authenticator a′, which vouches for the correctness of the state updates induced by o. Otherwise,
Ci skips this step, as the authenticator does not change. Then Ci issues an AUTH-signature ψ ′ and
sends it back to S together with a′ and s′o in a COMMIT-AUTH message.

As the last step in the passive phase, S increments b, stores the data in the COMMIT-AUTH

message at A[b], and if the operation did not abort, S applies it to s through refreshF .

Remarks. As in BST [WSS09] and in COP [CO14], operations that do not interfere with each
other may proceed without blocking. More precisely, if some pending operation is not com-
patible with the current operation, the latter is aborted and must be retried later. Preventing
clients from blocking is highly desirable but cannot always be guaranteed without introducing
aborts [CSS07]. The potential for blocking has led other systems, including SPORC [FZFF10]
and FAUST [CKS11], to adopt weaker and less desirable guarantees than fork-linearizability.
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Obviously, it makes no sense for a client to retry its operation while the non-compatible oper-
ation is still pending. However, the client does not know when the contending operation commits.
Additional communication between the server and the clients could be introduced to signal this.
Alternatively, the client may employ a probabilistic waiting strategy and retry after a random delay.

In the following we assume that S is correct. The communication cost of AIP amounts to the
five messages per operation. Every client eventually learns about all operations of all clients, as
it must clear them and include them in its hash chain. However, this occurs only when the client
executes an operation (in REPLY). At all other times between operations, the client may be offline
and inactive. In a system with n clients that performs h operations in total, BST [WSS09] and
COP [CO14] require Θ(nh) messages overall. AIP reduces this cost to Θ(h) messages, which
means that each client only processes a small constant number of messages per operation.

The size of the INVOKE, COMMIT, UPDATE-AUTH, and COMMIT-AUTH messages does not
depend on the number of clients and on the number operations they execute. The size of the REPLY

message is influenced by the amount of contention, as it contains the pending operations. If one
client is slow, the pending operations may grow with the number of further operations executed
by other clients. Note that the oldest pending operation is the one at sequence number b+ 1;
hence, all operations ordered afterwards are treated as pending, even when they already have been
committed. The REPLY message can easily be compressed to constant size, however, by omitting
the pending operations that have already been sent in a previous message to the same client.

The functionality-dependent cost, in terms of communicated state and auxiliary data, is di-
rectly related to the ADS for F . In practice, hierarchical authenticated search structures, such as
hash trees and authenticated skip lists, permit small authenticators and auxiliary data [CW11].

3.2 ESCUDO-CLOUD Innovation

A prototype of VICOS that works with the key-value store interface of commodity cloud storage
services has been implemented, and an evaluation demonstrates its advantage compared to existing
systems. The specific innovation compared to the published work [BCK15] consists of a revised
integration with the cloud-object storage and a completely new evaluation.

The remaining sections are structured as follows: The object-storage protocol VICOS is intro-
duced in Section 3.3, and Section 3.4 describes the prototype. An evaluation has been performed
and is described in Section 3.5.

3.3 Verification of Integrity and Consistency of Cloud Object Stor-
age (VICOS)

We now describe the protocol for verifying the integrity and consistency of cloud object storage,
abbreviated VICOS. It leverages AIP from the previous section and provides a fork-linearizable
Byzantine emulation for a practical object-store service, in a manner that is transparent to the stor-
age provider. We first define the operations of the cloud storage service and outline the architecture
of VICOS. Next we instantiate AIP for verifying the integrity of a simple object store and show
how VICOS extends this to practical cloud storage.

More precisely, VICOS consists of the following components (see Fig. 3.1):

1. A cloud object store (COS) service with a key-value store interface, as offered by commer-
cial providers. It maintains the object data stored by the clients using VICOS.
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2. An AIP client and an AIP server, which implement the protocol from the previous section
for the functionality of an authenticated dictionary (ADICT) and authenticate the objects at
the cloud object store. The AIP server runs remotely as a cloud service accessed by the AIP
client. This is abbreviated as AIP with ADICT.

3. The VICOS client exposes a cloud object store interface to the client application and trans-
parently performs integrity and consistency verification. During each operation, the client
consults the cloud object store for the object data itself and the AIP server for integrity-
specific metadata. In particular, AIP server running ADICT stores a cryptographic hash of
every object.

Note that the cloud object store as well as the AIP server are in the untrusted domain; they may, in
fact, collude together against the clients.

again later, it must be given a new identity. Group management protocols for adding and removing
clients dynamically have been discussed in the context of existing systems, such as VENUS [30] and
SPORC [13].

4 Verification of integrity and consistency of cloud object storage (VI-
COS)

We are now ready to introduce our main contribution, the protocol for verifying the integrity and con-
sistency of cloud object storage, abbreviated VICOS. It leverages AIP from the previous section and
provides a fork-linearizable Byzantine emulation for a practical object-store service, in a manner that
is transparent to the storage provider. We first define the operations of the cloud storage service and
outline the architecture of VICOS. Next we instantiate AIP for verifying the integrity of a simple object
store and show how VICOS extends this to practical cloud storage.

More precisely, VICOS consists of the following components (see Fig. 2):

1. A cloud object store (COS) service with a key-value store interface, as offered by commercial
providers. It maintains the object data stored by the clients using VICOS.

2. An AIP client and an AIP server, which implement the protocol from the previous section for
the functionality of an authenticated dictionary (ADICT) and authenticate the objects at the cloud
object store. The AIP server runs remotely as a cloud service accessed by the AIP client. This is
abbreviated as AIP with ADICT.

3. The VICOS client exposes a cloud object store interface to the client application and transparently
performs integrity and consistency verification. During each operation, the client consults the
cloud object store for the object data itself and the AIP server for integrity-specific metadata. In
particular, AIP server running ADICT stores a cryptographic hash of every object.

Note that the cloud object store as well as the AIP server are in the untrusted domain; they may, in fact,
collude together against the clients.

Client application

VICOS client (Alg. 6)

Cloud object store (COS)

COS client
AIP client with ADICT

(Alg. 1–2 with Alg. 4–5)

VICOS serverAIP server with ADICT
(Alg. 3 with Alg. 4–5)

VICOS server

Figure 2. Architecture of VICOS: the two untrusted components of the cloud service are shown at the
top, the trusted client is at the bottom.
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Figure 3.1: Architecture of VICOS: the two untrusted components of the cloud service are shown
at the top, the trusted client is at the bottom.

3.3.1 Cloud Object Store (COS)

The cloud object store (COS) is modeled by a key-value store (KVS) and provides a “simple”
storage service to multiple clients. The COS stores objects in a flat namespace, where each object
is an arbitrary sequence of bytes (or a “blob,” a binary large object), identified by a unique name
or key. We assume that clients may only read and write entire objects, i.e., it is not possible to read
from or write into the middle of an object, as in a file system.

Our formal notion of a KVS internally maintains a map M that stores the values in V under
their respective keys taken from a universe K . It provides four operations:

1. kvs-put(k,v): Stores a value v ∈ V under key k ∈K , that is, M[k]← v.

2. kvs-get(k): Returns the value stored under key k ∈K , that is, M[k].

3. kvs-del(k): Deletes the value stored under key k ∈K , that is, M[k]←⊥.

4. kvs-list(): Returns a list of all keys for which a value is stored, that is, the list 〈k∈K |M[k] 6=
⊥〉.
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This API forms the core of many real-world cloud storage services, such as Amazon S3 or Open-
Stack Swift. Typically there is a bound on the length of the keys, such as a few hundred bytes, but
the stored values can be much larger and practically unbounded (on the order of several Gigabytes).
For simplicity, we assume that the object store provides atomic semantics during concurrent ac-
cess, being aware that cloud storage systems may only be eventually consistent [BG13] due to
network partitions.

Many practical cloud object stores support a single-level hierarchical name space, formed by
containers or buckets. We abstract this separation into the keys here; however, a production-grade
system would introduce this separation again by applying the design of VICOS for every container.

3.3.2 Authenticated Dictionary Implementation (ADICT)

VICOS instantiates AIP with the functionality of a KVS that stores only short values. In order to
distinguish it from the cloud object store, we refer to it as the authenticated dictionary, denoted
by ADICT, with operations adict-put, adict-get, adict-del, and adict-list.

The implementation of ADICT uses the well-known approach of building a hash tree over
its entries [BEG+94, NN00, CW11]; see Alg. 4–5 for the details of how ADICT is implemented
within AIP. The AIP server stores the values in a map D and maintains a hash tree T , constructed
over the list of key-value pairs stored in the map, according to a fixed sort order on the keys. That
is, every leaf node of the hash tree is computed by hashing the node key, its value, and the key
of the successor leaf node together. The next node has to be included in order to authenticate the
absence of a key in response to a query for a non-existing key (e.g., [NN00]). The root of the hash
tree serves as the authenticator for ADICT.

For the adict-put, adict-get, and adict-del operations, the server extracts those paths from T
that are necessary to verify the correctness of the retrieved value and places them in so. For adict-
put and adict-del operations, queryADICT also places these paths into so because the client needs
them to construct the updated root hash. For adict-list, the complete hash tree is included in so. The
asterisks (*) in Alg. 4–5 denote some additional data and steps necessary to verify the predecessor
or successor leaves for authenticating an absent key (details of this are omitted here and can be
found in the literature [CW11]).

The compatibleADICT(µ,u) function of Alg. 4–5 defines the compatibility relation among the
operations of the authenticated dictionary; VICOS supports the same KVS interface and inher-
its this notion of compatibility for the cloud-storage operations. For more general services like
databases, one would invoke a transaction manager here. For ADICT, the compatibility between a
first (pending) operation u and a second (current) operation o is given by Table 3.1. For instance,
adict-put followed by adict-get for the same key or followed by adict-list are not compatible,
whereas two adict-list and adict-get operations are always compatible.

The advantage of considering operation compatibility over commutativity (as used by previ-
ous work such as ACOP [CO14]) becomes apparent here: only 8 pairs among the 49 cases shown
are not compatible, whereas 22 out of 49 cases do not commute and would be aborted with com-
mutativity (the additional 14 cases are underlined in Table 3.1).
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Algorithm 4 Authenticated dictionary implementation (ADICT) for AIP, Part 1
state

D : K →{0,1}∗: authenticated dictionary, initially empty
T : hash tree over D, initially empty

function queryADICT((D,T ),o)
if o = adict-put(k,v)∨o = adict-del(k) then

r←⊥
so← sibling nodes on path (*) from k to root in T

else if o = adict-get(k) then
r← D[k]
so← sibling nodes on path (*) from k to root in T

else // o = adict-list()
r← 〈k ∈K |D[k] 6=⊥〉
so← T

return (r,so)

function authexecADICT(o,a,r,so)

if o = adict-put(k,v)∨o = adict-get(k)∨o = adict-del(k) then
if so is not a valid path (*) from k to tree root a then

return (·, ·, FALSE)

if o = adict-put(k,v) then
insert leaf node k with value v in the tree
s′o← updated path from k to tree root
a′← updated hash-tree root

else if o = adict-get(k) then
if path (*) not consistent with node k holding r then

return (·, ·, FALSE)

s′o←⊥
a′← a

else if o = adict-del(k) then
delete leaf node k from the tree
s′o← updated paths from siblings of k to tree root
a′← updated hash-tree root

else // o = adict-list()
if r is not list of keys in leaves of tree with root a then

return (·, ·, FALSE)

s′o←⊥
a′← a

return (a′,s′o,TRUE)
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Algorithm 5 Authenticated dictionary implementation (ADICT) for AIP, Part 2
function refreshADICT((D,T ),o,so)

if o = adict-put(k,v) then
D[k]← v
update path in T from k to root, as taken from so

else if o = adict-del(k) then
D[k]←⊥
update path in T from k to root, as taken from so

return (D,T )

function compatibleADICT(µ,u)
for o ∈ µ do

if ¬compatibleADICT (u,o) then // See Table 3.1 for the compatibleADICT () relation on operations
return FALSE

return TRUE
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adict-put(x, ·) √ √
—

√ √ √
—

adict-put(y, ·) √ √ √
—

√ √
—

adict-get(x)
√ √ √ √ √ √ √

adict-get(y)
√ √ √ √ √ √ √

adict-del(x)
√ √

—
√ √ √

—
adict-del(y)

√ √ √
—

√ √
—

adict-list()
√ √ √ √ √ √ √

Table 3.1: The compatibleADICT (·, ·) relation for ADICT and the KVS interface, where x,y ∈K

denote distinct keys: if the operation in a row is pending, then a checkmark
√

means that the
operation in the column is compatible. Underlined checkmarks indicate cases where the operations
do not commute.
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3.3.3 VICOS Client Implementation

VICOS emulates the key-value store API of a cloud object store (COS) to the client and trans-
parently adds integrity and consistency verification. As with AIP, consistency or data integrity
violations committed by the server are detected through assert; any failing assertion triggers an
alarm. It must be followed by a recovery action whose details go beyond the scope of this doc-
ument. Analogously to AIP, VICOS may return ABORT; this means that the operation was not
executed and the client should retry it.

Algorithm 6 Implementation of VICOS at the client.
function vicos-put(k,v)

x← a random nonce
cos-put(k‖x,v)
h← hash(v)
r← aip-invoke(adict-put(k,〈x,h〉))
if r = ABORT then // concurrent incompatible operation

cos-del(k‖x)
return r

function vicos-get(k)
r← aip-invoke(adict-get(k))
if r = ABORT then // concurrent incompatible operation

return ABORT

〈x,h〉 ← r
v← cos-get(k‖x)
assert hash(v) = h
return v

function vicos-del(k)
r← aip-invoke(adict-del(k))
if r = ABORT then // concurrent incompatible operation

return ABORT

cos-del (k‖∗) // deletes all keys with prefix k
return r

function vicos-list()
r← aip-invoke(adict-list())
if r = ABORT then // concurrent incompatible operation

return ABORT

return r

Algorithm 6 presents the pseudo code of the VICOS client. Basically, it protects every object
in the COS by storing its cryptographic hash in the authenticated dictionary (ADICT). Operations
on the object store trigger corresponding operations on COS and on ADICT, as provided by AIP
for consistency enforcement.

In order to prevent race conditions, VICOS does not store the hash of an object under the
object’s key in COS directly, but translates every object key to a unique key for COS. Otherwise,
two concurrent operations accessing the same object might interfere with each other and leave the
system in an inconsistent state. More precisely, in a vicos-put(k,v) operation, the client chooses
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a nonce x (a value guaranteed to be unique in the system, such as a random string) and stores v
in COS using cos-put(k‖x,v) with the translated key k‖x. Furthermore, it computes h← hash(v)
and stores 〈x,h〉 in ADICT using adict-put at key k. The cos-put and cos-get operations actually
stream long values. When adict-put aborts due to concurrent operations, the client deletes v again
from COS using cos-del(k‖x).

For a vicos-get(k) operation, the client first calls adict-get(k) and retrieves 〈x,h〉. Unless this
operation aborts, the client translates the key and calls cos-get(k‖x) to retrieve the value v. After
v has been read (or streamed), the client compares its hash value to h, asserts that they match, and
then outputs v.

Without key translation, two concurrent vicos-put operations o1 and o2 writing different values
to the same key k might both succeed with cos-put(k,v1) and cos-put(k,v2), respectively, but the
adict-put for o2 might abort due to another concurrent operation. Then COS might store v2 but
ADICT stores the hash of v1 and readers would observe a false integrity violation. Thanks to key
translation, no versioning conflicts arise in the COS. Atomicity for multiple operations on the same
object key follows from the properties of AIP with the ADICT implementation. The vicos-del(k)
and vicos-list() operations proceed analogously; but the latter does not access COS.

3.3.4 Correctness

It is easy to see that the implementation of VICOS satisfies the two properties of a fork-linearizable
Byzantine emulation. First, when S is correct, then the clients proceed with their operations and
all verification steps succeed. Hence, VICOS produces a linearizable execution. The linearization
order is established by AIP running ADICT. Furthermore, when the clients execute sequentially,
then by the corresponding property of AIP, no client ever receives ABORT from ADICT.

Second, consider the case of a malicious server controlling COS and the AIP server together.
AIP ensures that the operations on ADICT (adict-put, adict-get, etc.) are fork-linearizable ac-
cording to Section 3.3. The implementation of ADICT follows the known approach of memory
checking with hash trees [BEG+94, NN00] and therefore authenticates the object hash values
that VICOS writes to ADICT. According to the properties of the hash function, the object data is
uniquely represented by its hash value. Since VICOS ensures the object data written to COS or
returned to the client corresponds to the hash value stored in ADICT, it follows that all operations
of VICOS are also fork-linearizable.

3.4 Prototype

We have implemented a prototype of VICOS in Java; it consists of a client-side library (“VICOS
client”) and the server code (“VICOS server”). The system can be integrated with applications
that require cryptographic integrity and consistency guarantees for data in untrusted cloud storage
services. It is available as open-source on GitHub (https://github.com/ibm-research/vic
os).

3.4.1 VICOS Implementation

The client-side library uses the BlobStore interface of Apache jclouds (Version 2.0.0 -Snapshot,
https://jclouds.apache.org/) for connecting to different cloud object stores. The server runs
as a standalone web service, communicating with the client-side library using the Akka frame-
work (Version 2.4.4, http://www.akka.io).
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Akka is an event-driven framework which supports the actor model [HBS73]. It fits perfectly
into the system model of VICOS and allows for rapid development. This simplifies the actual
protocol implementation because of the high level of abstraction, especially relating to network
operations and concurrency.

The client library as well as the server code are implemented as actors within the framework.
Actors are independent units which can only communicate by exchanging messages. Every actor
has a mailbox that buffers all incoming messages. By default, messages are processed in FIFO or-
der by the actor. This allows the server protocol implementation to process all incoming messages
sequentially and execute each protocol step atomically, that is, mutually exclusive with respect to
all others. The implementation of VICOS, therefore, closely follows the high-level description
of AIP. Note that the system performance is limited by the fact that it does not exploit modern
multi-core architectures.

We developed the VICOS client library so that it may easily be integrated into existing ap-
plications to provide integrity protection. It uses the modular approach of AIP instantiated with
an authenticated data structure (ADS). A developer only needs to implement the desired function-
ality, by defining the state (e.g., the internal KVS data structure), a set of operations, and their
compatibility relation. For that reason, we have defined two interfaces: state and operation pro-
cessor. Operations are described using Google’s Protocol Buffers (https://developers.googl
e.com/protocol-buffers/) executed by the operation processor. This modular concept allows
us to reuse and extend the core implementation of the protocol.

The VICOS prototype provides a simple KVS functionality by implementing these interfaces.
More precisely, the KVS state is a map supporting GET, PUT, DEL and LIST operations. The
KVS operation processor provides the implementations of query, authexec, refresh, and compat-
ible as described in Alg. 4–5. The client and the server protocol each contain an instance of the
KVS operation processor. The client exposes a simple KVS interface, adding Java Exceptions
for signaling integrity and consistency violations. Furthermore, the client library is completely
asynchronous and supports processing the AIP passive phase in the background without blocking
the client process.

The cryptographic signatures can be implemented in multiple ways. According to the security
assumptions of the model, all clients trust each other, the server alone may act maliciously, and
only clients issue digital signatures. Therefore, one can also adopt a simplified trust model with
“signatures” provided by a message-authentication code (MAC). For many applications, where
strong mutual trust exists among the clients, MACs suffice and will result in faster execution. On
the other hand, this simplification renders the system more fragile and exposes it easily to attacks
by clients.

In particular, VICOS uses HMAC-SHA1 with 128-bit keys provided by the Java Cryptography
Extension as the default signature implementation. The code also supports RSA and DSA sig-
natures with 2048-bit keys. A user can choose between these signature implementations via a
configuration file. This approach also allows developers to change to a different signature imple-
mentation, or even implement their own according to new requirements. Particularly, this might
be useful for porting the code to other platforms such as mobile devices, with less computation
power.

The core implementation of VICOS consists of 3400 sloc, the server part is 400 sloc more,
whereas the client part including the integration with the evaluation platform (see below) takes
800 sloc extra.
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3.4.2 Practical Issues and Optimizations

While developing VICOS and experimenting with it, we obtained experience with Akka and
gained insight into the protocol’s operation. This has led to further optimizations described here.

Bounded pending list. An issue that we discovered in Akka while implementing VICOS is
Akka’s default maximum message size of only 128kB. In particular, this becomes a problem in
VICOS when REPLY messages include a large partial state or a very long list of pending operations.
By configuring Akka with larger message sizes (we used a maximum size of 128MB), the direct
limitation disappears.

However, we experienced that large messages impact the overall performance negatively.
When the number of pending operations increases, the resulting very large messages slow down
the operations of VICOS. Therefore, we implemented a way to bound the length of the pending-
operations list, that is, we introduced a maximum number of pending operations as a configurable
value and modified the protocol. When this maximum is reached, the server buffers all new incom-
ing requests (INVOKE messages) until enough other operations have completed and the number of
pending operations goes below the limit. We tested with different maximum sizes for the pending
list from 32 up to 1024 operations, and chose a limit of 128 for the evaluations.

A more robust solution of that issue would be to signal the clients to wait before sending more
requests, instead of just buffering them at the server. Although limiting the number of pending
operations under high server load increases the latency of client requests, it also increases the
overall performance and stability of the system. In summary we found that the benefits of limiting
the size of the pending list outweigh the drawbacks.

Message delivery order. During development we experienced slow performance caused by the
FIFO order in which the protocol actors processed the arriving messages. Therefore, we imple-
mented priority mailboxes for the server and the client actor and defined a priority rule to prefer
COMMIT, UPDATE-AUTH, COMMIT-AUTH messages over INVOKE and REPLY messages. This has
the immediate benefit that the server processes UPDATE-AUTH messages and thereby completes
the PASSIVE PHASE of already authenticated operations before it starts working on new INVOKE

messages. This preference shortens the list of pending operations directly. Certainly, this may
increase the response time for new operations again, but eventually, it prevents more operations
from aborting due to conflicts under high load.

3.5 Evaluation

This section reports on performance measurements with the VICOS prototype. We study the
general overhead of integrity protection, the scalability of the protocol, and the effect of (in-)com-
patible operations.

3.5.1 Experimental Setup

The experiments use cloud servers and an OpenStack Swift-based object storage service (http:
//swift.openstack.org) of a major cloud provider with about two dozen data centers world-
wide (Softlayer — an IBM Company, http://www.softlayer.com/object-storage).

The VICOS server runs on a dedicated “baremetal” cloud server with a 3.5GHz Intel Xeon-
Haswell (E3-1270-V3-Quadcore) CPU, 8GB DDR3 RAM, and a 1Gbps network connection. The
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clients run on six baremetal servers in total, each server with 2x 2GHz Intel Xeon-SandyBridge
(E5-2620-HexCore) CPUs, 16GB DD3 RAM, and a 1Gbps network connection. All clients are
hosted in the same data center. All machines run Ubuntu 14.04-64 Linux and Oracle Java (JRE 8,
build 1.8.0_77-b03).

To simulate a realistic environment, we conduct experiments in two settings as shown in Ta-
ble 3.2: A datacenter setting, with all components in the same data center (“Amsterdam”), and
a wide-area setting, where the VICOS server and COS are located together in one data center
(“Milan”), and the clients at a remote site (“Amsterdam”).

Setting Clients VICOS server Cloud object storage Latency [ms]

Datacenter Amsterdam Amsterdam Amsterdam < 1
Wide-area Amsterdam Milan Milan ∼ 10

Table 3.2: Evaluation setting

The datacenter setting establishes a best-case baseline due to the very low network latencies
(< 1ms). This deployment is not very realistic in terms of the security model because the clients
and the storage service are co-located.

The wide-area setting exhibits a moderate network latency (round-trip delay time of 20ms)
between the two data centers and models the typical case of geographically distributed clients
accessing a cloud service with its point-of-access on the same continent but in different countries.

The datacenter setting establishes a best-case baseline due to the very low network latencies (<1 ms).
This deployment is not very realistic in terms of the security model because the clients and the storage
service are co-located.

The wide-area setting exhibits a moderate network latency (round-trip delay time of ⇠20 ms) be-
tween the two data centers and models the typical case of geographically distributed clients accessing a
cloud service with its point-of-access on the same continent but in different countries.
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Figure 3. The experimental setup, with one COSBench controller and many COSBench drivers, access-
ing the cloud storage service through the VICOS client.

The evaluation is driven by COSBench (Version 0.4.2 – https://github.com/intel-cloud/
cosbench), an extensible tool for benchmarking cloud object stores. We have created an adapter to
drive VICOS from COSBench, as shown in Fig. 3. COSBench uses a distributed architecture, consist-
ing of multiple drivers, which generate the workload and simulate many clients invoking concurrent
operations on a cloud object store, and one controller, which controls the drivers, selects the workload
parameters, collects results, and outputs aggregated statistics. In particular, the COSBench setup for
VICOS reports the operation latency, defined as the time that an operation takes from invocation to
completion, and the aggregated throughput, defined as the data rate between all clients and the cloud
storage service.

COSBench invokes “read” and “write” operations, implemented by vicos-get and vicos-put, respec-
tively. Every reported data point involves read and write operations taken over a period of at least 30 s
after a 30 s warm-up. In the experiments two configurations are measured:

1. The native object storage service as a baseline, with direct unprotected access from COSBench to
cloud storage, but accessing the cloud storage through the jclouds interface; and

2. VICOS, running all operations from COSBench through jclouds and the verification the protocol.

6.2 Results

6.2.1 Cryptography microbenchmark

In a first experiment we study how different signature implementation affect the computation and net-
work overhead of VICOS. We implemented digital signatures using RSA and DSA with 2048 bit keys,
and additionally HMAC-SHA1 with 128 bit keys. The cryptographic algorithms are provided by the
SunJCE version 1.8 provider.

23

Figure 3.2: The experimental setup, with one COSBench controller and many COSBench drivers,
accessing the cloud storage service through the VICOS client.

The evaluation is driven by COSBench (Version 0.4.2 – https://github.com/intel-cl
oud/cosbench), an extensible tool for benchmarking cloud object stores. We have created an
adapter to drive VICOS from COSBench, as shown in Fig. 3.2. COSBench uses a distributed ar-
chitecture, consisting of multiple drivers, which generate the workload and simulate many clients
invoking concurrent operations on a cloud object store, and one controller, which controls the
drivers, selects the workload parameters, collects results, and outputs aggregated statistics. In par-
ticular, the COSBench setup for VICOS reports the operation latency, defined as the time that an
operation takes from invocation to completion, and the aggregated throughput, defined as the data
rate between all clients and the cloud storage service.

COSBench invokes “read” and “write” operations, implemented by vicos-get and vicos-put,
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respectively. Every reported data point involves read and write operations taken over a period of
at least 30s after a 30s warm-up. In the experiments, two configurations are measured:

1. The native object storage service as a baseline, with direct unprotected access from COS-
Bench to cloud storage, but accessing the cloud storage through the jclouds interface; and

2. VICOS, running all operations from COSBench through jclouds and the verification proto-
col.

3.5.2 Results

Cryptography microbenchmark

In a first experiment we study how different signature implementations affect the computation and
network overhead of VICOS. We implemented digital signatures using RSA and DSA with 2048bit
keys, and additionally HMAC-SHA1 with 128bit keys. The cryptographic algorithms are provided
by the SunJCE version 1.8 provider.

We measured the time it takes on a client to sign and verify an invoke message using the
three signature implementations. Figure 3.3 shows that the RSA signing takes around 5ms, while
the verification takes around 220us. DSA takes around 4ms for signing and around 1.5ms for
verification, whereas HMAC signing and verification only takes less than 20us. Additionally, the
resulting signature sizes have a direct effect on the message sizes and the network load. RSA
signatures are 256byte, while DSA signatures are only 40byte. HMAC reduces the signature size
to 20byte.

We use HMAC-SHA1 as the default implementation of signatures in the remainder of the
evaluation. Its operations are much faster than for RSA and DSA signatures, reducing the compu-
tation overhead at the client. Moreover, the smaller signature size of HMAC-SHA1 also reduces
the network overhead of VICOS.
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Figure 3.3: The average time for digital-signature operations (HMAC, RSA, and DSA); note that
the y-axis uses log-scale.

Object size

In this experiment we study how the object size affects the latency and the throughput of VICOS.
We define a workload with a single client executing read and write operations for objects of size 1
kB, 10 kB, 100 kB, 1 MB.
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Figure 3.4: The effect of different object sizes: Latency and throughput of read and write opera-
tions with one client.

Fig. 3.4 shows that the latency and throughput of VICOS behave very similarly to those of
the native system. As expected, we observe that VICOS introduces an overhead that incurs a
small cost compared to unprotected access to storage. In particular, for the datacenter setting,
VICOS increases latency by an average of 16.2% for read, and 24.0% for write; it decreases
throughput by an average of 15.8% for read, and 17.7% for write. We also expect the overhead to
decrease with bigger objects. However, we could not find this effect in the datacenter setting: here
the overhead remains practically constant, from the small to the large objects. In the wide-area
setting, the overhead is approximately the same for the smaller objects (1kB and 10kB), but it
indeed decreases as the object size grows and disappears at the largest object size (1000kB).

Interestingly, in the wide-area setting, the relative performance in terms of throughput is re-
versed between read and write for 1000kB objects. Whereas read has lower latency and achieves
better throughput than write in all other experiments, this relation is reversed in the right-most data
points of Fig. 3.4. This may be caused by caching data on the cloud object store, which improves
read performance for smaller objects, but disappears when larger objects are stored and accessed
less frequently than in the datacenter setting.

Number of clients

We also study the scalability of VICOS by increasing the number of clients. The workload uses
up to 128 clients (spread uniformly over the six COSBench drivers), and 64 objects with a fixed
size of 10kB. One half of the objects are designated for read operations and the other half for write
operations, respectively. This division prevents concurrency conflicts among the client operations.
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Figure 3.5: Scalability with the number of clients: Latency and throughput of read and write
operations with 10kB objects.

For practical reasons, we restrict the size of the pending list in the protocol to 128 operations. We
do not use a large number of clients because of the underlying assumption that clients trust each
other, which might not be realistic in much larger groups.

As Fig. 3.5 shows, the native system throughput scales linearly until the network is saturated
with 64 clients in the data center setting. VICOS follows the same behavior but reaches saturation
already with 32 clients. In contrast, in the wide-area setting, VICOS becomes saturated with
8 clients, from where throughput remains almost constant and latency grows. No saturation is
evident with the native configuration and up to 128 clients.

The reason for the slower operation in the wide-area experiment is that all requests of the
clients are handled by the VICOS server sequentially and thus it becomes a bottleneck of the sys-
tem. Due to the higher latency in the wide-area setting, operations remain longer in the pending
queue. This means more work for the clients and the server. Since the active and passive pro-
tocol phases are asynchronous, clients may invoke the next operation already before they have
completed a previous operation. Hence, they reach limit of the bounded pending queue and the
throughput of VICOS remains limited at the rate imposed by the server’s operation.

Concurrent operations

Finally, we investigate the effect of conflicting concurrent operations. VICOS aborts an operation
if it is not compatible with one of the pending operations (according to the definition of “com-
patible” [BCK15]). In that case the client has to retry later. Protocols like BST [WSS09] and
ACOP [CO14] are more cautious and abort as soon as two operations do not commute, which oc-
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Figure 3.6: The effect of different values for the Zipf distribution factor θ of the COSBench object
selector: Selection rate for each object with 10000 selections, 64 objects, and varying θ .
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Figure 3.7: The effect of conflicting concurrent operations: Success rate of read and write opera-
tions with 10kB objects, sixteen clients, and varying Zipf distribution factors θ .

curs more often. Hence, we define ACOP as our baseline for this experiment. The implementation
throws an abort exception when a conflict occurs; that causes COSBench to report the operation
as failed and to continue immediately with the next operation. At the end of each experiment
COSBench reports the overall operation success rate. We expect a higher success rate for VICOS
compared to ACOP as already discussed in Section 3.3.2.

To evaluate this behavior we created a workload with sixteen clients each invoking read and
write operations over 64 objects with a fixed size of 10kB. Object accesses are chosen according to
“Zipf’s law”, which approximates many types of data series found in natural and social structures.
The Zipf distribution is based on a ranking of the elements in a universe and postulates that the
frequency of any element is inversely proportional to its rank in the frequency table. Thus, the
most “popular” object will occur approximately twice as often as the second most popular one,
three times as often as the third most popular and so on. Zipf distributions are often observed when
users access websites [AH02]. Figure 3.6 shows the object access rate using four different values
for the Zipf factor θ . For θ = 0.99 the access rate for the first object (with the biggest contention)
is about 20%, and the least often accessed object is selected only with probability about 0.3%.
With θ = 0 the Zipf distribution corresponds to uniformly random access over the objects.

Since COSBench does not support Zipf distributions by default, we implemented the algo-
rithm of Gray et al. [GSE+94] for generating a Zipf-like access distribution, as also used in
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YCSB (https://github.com/brianfrankcooper/YCSB). With this workload we cause opera-
tions to conflict by progressively increasing θ ∈ {0,0.5,0.75,0.99}. The higher the Zipf factor θ ,
the more clients concurrently access the same objects and invoke non-compatible operations, caus-
ing aborts.

Figure 3.7 shows the operation success rates for VICOS and for ACOP, using the four different
Zipf factors. Recall from from Table 3.1 that a put operation in the KVS interface is always
compatible with every preceding operation and never aborts. Therefore, the write operations show
100% success rate for VICOS. For the commuting operations in ACOP, on the other hand, writes
are progressively more often aborted with increasing θ . The behavior of reads is similar for
VICOS and ACOP because preceding writes cause aborts equally often.

The advantage of VICOS over protocols considering only operation commutativity becomes
evident here, in that write operations always succeed, and the overall abort rate is significantly
reduced.

Conclusion

The performance evaluation shows that VICOS achieves its goal of adding consistency and in-
tegrity protection while remaining almost transparent to clients using cloud object stores. The
cost added over the raw performance is most visible in the datacenter setting, which is not a real-
istic deployment for the intended applications. Still this overhead remains limited to about 20%
for accesses with high throughput (Section 3.5.2). With many clients performing operations con-
currently, the extra cost may become noticeable (Section 3.5.2), and further work is needed for
decreasing this. It should be added that the VICOS prototype is currently a proof of concept and
not product-level code.

3.6 Conclusions

VICOS is a complete system for protecting the integrity and consistency of data outsourced to
untrusted commodity cloud object stores. VICOS works with commodity cloud storage services
and ensures the best possible consistency notion of fork-linearizability. It supports wait-free client
operations and does not require any additional trusted components.

There are several challenges that this work does not yet address, which remain open for the
future. An interesting question, for instance, is how to recover from an integrity violation. Since
we assume only a single untrusted server and that client data resides at the cloud storage service,
orthogonal techniques are needed for resilience of the data itself.

Another interesting challenge would be to consider malicious clients, as one further step to-
wards a more realistic system. For small groups of clients our system model makes sense, but
for groups with hundreds of clients it seems difficult to maintain this assumption. The situation is
especially interesting when a client colludes with the malicious server.

Finally, the approach of AIP also be applied to services beyond cloud storage; for example,
cloud and NoSQL databases, interactions in a social network, or certificate and key management
services.
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4. Conclusions

This deliverable presents the techniques developed by WP3 for ensuring collaborative access
to data, while ensuring the confidentiality and integrity of data and of accesses to them.

Chapter 1 focuses on the protection of the confidentiality of accesses. The innovation of
ESCUDO-CLOUD is represented by a novel solution for enforcing access control over the shuffle
index. The approach presented in this chapter extends the original shuffle index structure studied
in WP2, to enable access control enforcement on the data stored in the leaves of the index. To this
purpose, it builds on the techniques for selective access illustrated in Deliverable D3.1.

Chapter 2 presents ENKI, a novel system for securely executing relational operations on en-
crypted, access restricted data. The innovation of ESCUDO-CLOUD is represented by a new
model for encryption based access control (which defines access control restrictions at the level
of attribute values) and by different techniques to support the execution of relational operations
in multi user mode. To achieve this, we extend the work on key management presented in De-
liverable D3.1, on the definition of a multi-party model for selective encryption in a supply chain
scenario. We illustrate that our new encryption scheme, which supports several relational opera-
tions, is applicable to multiple application scenarios on SAP HANA.

Chapter 3 illustrates the advances made in protecting consistency and integrity of data stored
in a cloud-object store. The innovation of ESCUDO-CLOUD is represented by the realization of
a prototype of VICOS that works with the key-value store interface of commodity cloud storage
services. In this chapter, we illustrate the design of VICOS and present benchmark results obtained
for its evaluation.
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