
Project title: Enforceable Security in the Cloud to Uphold Data Ownership

Project acronym: ESCUDO-CLOUD

Funding scheme: H2020-ICT-2014

Topic: ICT-07-2014

Project duration: January 2015 – December 2017

D4.2
First Report on Multi Cloud and

Federated Cloud

Editors: Ahmed Taha (TUD)
Ruben Trapero (TUD)
Neeraj Suri (TUD)
Sara Foresti (UNIMI)
Ali Sajjad (BT)

Reviewers: David Bowden (EMC)
Björn Tackmann (IBM)

Abstract
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Executive Summary

The benefits of moving data storage to the Cloud are apparent: higher availability, increased stor-
age space, ubiquitous and concurrent data accesses, to name just a few. These benefits often
get enhanced when multiple providers coalesce to form either an integrated Multi-Cloud environ-
ment or a loosely-coupled Federated-Cloud for enhanced provisioning of (complex) services. The
multi-provider Cloud services permit the users to take advantage of a variety of new resources and
services from diverse providers. For example, users can now choose across providers with better
cost versus services offerings. Performance can be improved as the workload can be balanced
among the multiple Cloud providers. Availability can also be improved as the multi-provider
Cloud services can better implement data redundancy, distributing several copies of some parts
of the data among different providers. However, while the benefits are easy to list, there are also
several new security issues that need to be considered. As the data management is distributed
among different providers, the users can easily lose control of who is actually managing their data
(e.g., Cloud providers may collude and exchange data) and what accesses are transpiring on them.
In addition, different providers commonly offer services using different technical solutions that
introduce different vulnerabilities. As a result, multi-provider Cloud services must provide the
corresponding protection techniques adapted to the Multi-Cloud or Federated-Cloud service, and
also related guidance to the providers that are part of the Multi/Federated-Cloud service.
This deliverable explores different protection techniques for multi-provider Cloud services from
three perspectives.

• The evaluation of the service levels provided in Multi-Cloud services. Different providers
might implement different metrics that might entail conflicts between them. This deliverable
evaluates dependencies between metrics and uses these dependencies to develop techniques
for the accurate assessment of Multi-Cloud services.

• The definition of techniques based on data distribution and swapping for access confiden-
tiality. The availability of multiple Cloud providers helps to enhance the protection guaran-
tees offered to data owners. This deliverable extends a technique studied in Work Package
2 to protect access and pattern confidentiality to the Multi-Cloud scenario. The proposed
approach exhibits protection guarantees, also in case of collusion among providers.

• The design, development and integration of tools and techniques that offer the data protec-
tion solution for block and object storage services on multiple Cloud platforms. This deliv-
erable details how the BT Data Protection as a Service solution is built on top of underlying
services of key management and access control, and is governed by customer controlled key
release policies. The service is offered through a Cloud service store where the customer is
able to specify what kind of data protection it wants over which Cloud platform.
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1. Introduction

The benefits of a Cloud market composed of multiple different providers are apparent, for exam-
ple varied services offered at different prices, enhanced data availability with geographical spread,
reduced access time and many others. In theory, the security guarantees are also enhanced. How-
ever, the reality is that the variety of providers introduces uncertainty regarding data protection and
also opens several security concerns such as the loss of control (Which providers are accessing my
data?), exposure to different threats (Do the different implementations by different providers im-
ply varied exposure to the same vulnerabilities or open new vulnerabilities) or lack of assurance
(Are these providers, individually or collectively, fulfilling the user requirements?).

This deliverable tackles these problems by evaluating the security and data protection from the
following three perspectives.

• The evaluation of the service levels provided by a Multi-Cloud, considering the dependen-
cies among the services provided by its participants.

• The definition of techniques based on data distribution and swapping for protecting access
confidentiality.

• The design, development and integration of protection techniques in the federated Cloud
storage scenario.

Each of these elements is outlined below.

Multi-Cloud security dependencies. Security concerns about Cloud services increase when con-
sidering Multi-Cloud services. Although multiple Cloud providers offer similar security services
(e.g., encryption key management), they might provide different technical solutions to deal with
security threats associated with these security services. Additionally, from the user’s point of
view, this variety of security services across providers implies different capabilities and prices.
Comparing and assessing the offered services by different providers is essential and particularly
challenging in the case of compositions of multiple Cloud providers. This is due to the presence of
explicit and implicit dependencies across related services, as the users need to have: i) awareness
about these dependencies when specifying their requirements (something that is not easy given
the complexity of these dependencies and considering that users often have limited technical skills
to meaningfully parse such information); ii) means to know the level of service provided by a
Multi-Cloud service.
In this deliverable we present a framework that addresses this problem by: i) detecting conflicts
resulting from inconsistent customer requirements; ii) providing means to resolve the detected
conflicts; iii) evaluate the Service Level Agreement (SLA1) based service level provided by the

1An SLA is a formal contract between the CSP and the customer in which Cloud services and the corresponding
service level objectives that the CSP agrees to meet are defined.
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12 Introduction

various Cloud providers (along with the dependencies between the services implemented by each
provider).

Data distribution and swapping for protecting access confidentiality. In this deliverable, we
build on the results of Work Package 2 and extend protection techniques designed to operate with
a single provider to operate with a set of Cloud providers, increasing the protection guarantees
they provide to the users. The design of such techniques takes into account the risk of collusion
among Cloud providers. This deliverable specifically focuses on the protection, not only of con-
tent confidentiality, but also of accesses and patterns of accesses. As already discussed in Work
Package 2, protecting the confidentiality of sensitive data content is not sufficient in most sce-
narios. Indeed, revealing the target of accesses may still reveal sensitive information about both
the user accessing the data and the data content itself. Different solutions have been proposed
to protect access confidentiality (e.g., PIR, ORAM-based approaches, shuffle index). These so-
lutions consider a scenario characterized by the presence of a single Cloud provider storing the
whole dataset. In this deliverable, we illustrate an enhancement of the shuffle index, described in
Deliverable D2.1 [PFL15], that relies on the presence of three independent Cloud providers to im-
prove protection guarantees. The developed solution has been designed to resist to collusion even
among all the providers. We analyze the security guarantees provided by the distributed shuffle
index, considering also scenarios where Cloud providers collude.

Data Protection as a Service for Federated-Cloud storage. In this deliverable, we detail the first
version of design and implementation of BT’s “Data Protection as a Service” (DPaaS) solution.
The overall goal of this service is to offer data protection capability for multiple Cloud platforms
on different storage media and services. Within the scope of ESCUDO-CLOUD, BT is focusing
on data protection over three kinds of Cloud storage services; block storage, object storage and
Big Data storage services. The block storage service offers the creation and management of files
and virtualized raw block devices of a user-specified size. These block devices are typically used
as hard disks by attaching them to the customers’ virtual machines using the Cloud service’s API.
The object storage service offers the storage and management of data as objects, instead of files
and blocks. An object is typically comprised of the data, its metadata, and a globally unique
identifier. The Big Data storage services are offered in the form of Hadoop File System (HDFS)
clusters. However, the initial version of this solution within the scope of D4.2 will provide data
protection solution for file and block storage services on multiple Cloud platforms, as well as
Object storage services. The DPaaS will be built on top of underlying services of key management
and access control based on customer-controlled key release policies. The service will be offered
through a Cloud service store where the customer organization is able to specify what kind of
data protection it wants for its end-users. The service store will provide the interface for the
customers of the DPaaS to access and manage these storage services. The service store also has
the ability to install and configure the encryption agent software on virtual machines on multiple
Cloud platforms. As a result of this structure, the core solution architecture will be a common
encryption, key management and access control system but will have different abstraction layers
to cater for the underlying storage media.

1.1 Interactions with other Work Packages

The work discussed in this document is related to and interacts with the other ESCUDO-CLOUD
work packages as follows (Figure 1.1):

ESCUDO-CLOUD Deliverable D4.2



Section 1.2: Outline 13

Figure 1.1: Interactions of D4.2 with other Work Packages of ESCUDO-CLOUD

• Work Package 1 provides the validation use cases for ESCUDO. The use cases and related
requirements from deliverables D1.1 and D1.2 form the basis that the protection techniques
for Multi-Cloud services provided in this document are intended to address. In turn, the
techniques discussed in this report will be applied to the use cases as part of Work Package
1 and the results will be communicated in deliverables D1.3, D1.4 and Work Package 1.2.

• Work Package 2 provides the design and implementation of protection techniques for out-
sourced data. The techniques and tools provided by Work Package 2 are considered as part
of the applicability discussion in this document with respect to its applicability to Multi-
Cloud environments. In fact, we directly build on the shuffle-index approach studied in
Work Package 2, and we extend it to operate with multiple Cloud providers to provide bet-
ter access and pattern confidentiality guarantees.

• Work Package 5 receives the protection techniques for Multi-Cloud discussed in this doc-
ument for the purposes of dissemination and exploitation.

1.2 Outline

The remainder of this document is structured as follows. Chapter 2 describes the assessment
techniques for Multi-Cloud. Chapter 3 describes a solution based on data distribution and swap-
ping for protecting access confidentiality. Chapter 4 describes the protection techniques for the
Federated-Cloud storage scenario. Chapter 5 summarizes the contributions of this deliverable.

ESCUDO-CLOUD Deliverable D4.2



2. SLA Based Metrics and Assessment in
Multi-Cloud

An ongoing development in Cloud computing targets the combination of resources and services
from multiple Clouds. Improving the quality of services, while optimizing service cost; the ability
to migrate among several providers; avoiding vendor lock-in; and the need of particular Cloud
services which are not provided elsewhere are some of the reasons for using services from multi-
ple Clouds. Currently, two basic delivery models exist for multiple Clouds: Federated-Cloud and
Multi-Cloud (cf., Section 2.1.1). Each model defines its own degree of collaboration between the
involved Cloud Service Providers (CSPs) and the way the CSP interacts with the Cloud Service
Customers (CSCs). In the Multi-Cloud model, the services offered by multiple independent CSPs
are aggregated as one or more composite services. We focus on the Multi-Cloud model for its
applicability to the ESCUDO-CLOUD use cases, and as it gives customers the freedom to select
the Cloud providers that best satisfy their requirements. This is achieved through a third-party
(termed as Multi-Cloud middleware in this deliverable) that is responsible to deal with the varia-
tions of Cloud provider APIs [Far14].
Despite the frequently advocated economic and performance-related advantages of utilizing mul-
tiple Clouds, two basic concerns are not yet fully addressed in the community. First, with the
growth of public Cloud services, multiple CSPs offer “similar” services at different prices and
capabilities. Second, most of these services are typically bundled together with both explicit and
implicit dependency relations1 across them. For example, Dropbox depends on Amazon’s S3 ser-
vice for storage and on EC2 for computation [DMM+12]. This example shows a SaaS provider
that depends on other IaaS providers to support its software.
Another example is the “encryption keys management” service which depends on multiple factors.
Firstly, on the specific techniques used to store the encryption keys. Secondly, on the processes
specifying how keys are accessed and the possibility of the key recovery. Finally, it depends on
the control and management of each key. Each of these factors contains different levels of ser-
vices (e.g., different techniques to store and distribute the keys) which the customer can require
and the CSP agrees to fulfill. Most of these factors are dependent on each other [TMT+16].
These dependency relations can easily introduce conflicts. For instance, a customer may require
an unachievable level of a dependent service which can result in the customer requirements to be
impossible to satisfy. The question remains as to how customers can (a) score and then select
services for each single requirement, and (b) on how to optimize this allocation to satisfy the re-
quirements of the composite service, taking into consideration that these concerned services can
be conflicting or have different degree of importance for the customer.

1Dependency relations between services or simply service dependencies are the direct relations between one or
more services, where a service can depend on data or resources provided by another service.
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This chapter is organized as follows. Sections 2.1.1 and 2.1.2 develop the background and the
basic terminology related to the Multi-Cloud environment and the service dependencies respec-
tively. The State of the Art for SLA-based solutions in the Multi-Cloud environment is presented in
Section 2.1.3, and Section 2.2 highlights the innovations contributed by ESCUDO-CLOUD. This
is followed by a description of the novel ESCUDO-CLOUD quantitative service-level assessment
framework in Section 2.3 that considers service dependencies at the level of SLAs. Section 2.4
presents the real-world use-cases that validate the Multi-Cloud service evaluation and composition
as well as dependency management.

2.1 State of the Art

2.1.1 Multiple Clouds Delivery Models

The NIST report [NIS11] outlines that multiple Clouds can be used serially, when an application
or service is moved from one Cloud to another, or simultaneously, when services from different
Clouds are used. The reasons for selecting services and resources from multiple Clouds are various
and have been reported in several research/practitioner publications (such as [PWF11, SBKA13]).
Currently, there are two basic delivery models in place for multiple Clouds. The first is the Fed-
erated Cloud model where the CSPs establish agreements with each other in order to enhance the
service offer to their service consumers. The alternate is the Multi-Cloud where, unlike a federa-
tion of Clouds, the Multi-Cloud model does not imply interconnection and sharing of providers’
infrastructures. The term Multi-Cloud denotes that a third party is building unique entry points for
multiple Clouds, without a prior agreement with and between the CSPs [Pet14]. The CSPs provide
a composite Cloud service as set of services provisioned by different CSPs and aggregated as one
service by the third party. Each service offered by a provider is specified using the provider SLA,
as shown in Figure 2.1. In the Multi-Cloud model, the third party contracts the CSPs, negotiates
the terms of the services required by the customer, as offered by the CSPs, and subsequently mon-
itors the fulfillment of the SLAs. The third party can be a service on behalf of the Cloud customer2

or the customer uses library-based software for managing resource provisioning and scheduling3.
According to [GB14], the Cloud broker4 is often part of the service or library. Services are defined
in [GB14] as an application provisioning that is carried out by a service that can be hosted either
externally or in-house by the Cloud customers. Most such services include broker components in
themselves. Typically, application developers specify an SLA or a set of provisioning rules, and
the service performs the deployment and execution in the background, in a way respecting these
predefined attributes. Furthermore, libraries are defined as custom application brokers that directly
take care of provisioning and scheduling application components across Clouds [GB14].
It is important to note that variations between the current application programming interfaces
(APIs) often hinder the easy composition or configuration of services to be consumed from mul-
tiple Clouds. In order to use services from multiple Clouds in a real-world scenarios, several
additional technical barriers also need to be addressed such as interoperability, portability, data
and services mobility, and middleware openness. In order to control the interface between the
customer and different providers in a Multi-Cloud scenario, a contractual basis in the form of an

2Several deployable services are the results of open-source projects such as mOSAIC, CLOUD4SOA, OPTIMIS.
3The most known library-based approaches for managing resource provisioning and scheduling are jclouds, lib-

cloud, δ-cloud and simple Cloud.
4An entity that manages the use, performance and delivery of Cloud services and intermediates the relationships

between CSPs and customer [Pet14].
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SLA, as a composite SLA across different providers, is needed. This composite SLA (named
Multi-Cloud SLA and abbreviated as MCSLA in this chapter) contains all contractual services
of all involved SLAs and in addition the dependencies that exist between the different aspects of
atomic and composite SLAs5. In this environment, we focus on the decision-making problem of
the selection and deployment of composite SLAs while considering (a) the customer requirements,
and (b) handling the dependencies between different Service Level Objective (SLOs6).
It is worth mentioning that the research on Multi-Cloud orchestration is still in a very early stage,

SLA SLA

MCSLA
CSC

SLA

Figure 2.1: Multi-Cloud architecture

with only some exploratory research initiatives appearing from academia and industry. Bernsmed
et al. [BJMU11] presented a method for managing the SLA life cycle in the context of feder-
ated Cloud services. However, they did not further elaborate on the techniques needed to conduct
benchmarking. Jrad et al. [JTS12] proposed an SLA-based brokering service for the federated
Cloud. However, their scheme is relevant primarily to the initial phase of the scheme presented in
this chapter where the SLAs are defined, collected and ranked according to the customers’ require-
ments. A taxonomy of the existing Inter-Cloud architectures and their brokering features is pro-
vided in [GB14]. The EU-funded OPTIMIS project [FHT+12] developed a toolkit based on agent
technology to optimize the full service life cycle in the Cloud. A significant drawback of the OP-
TIMIS architecture, in terms of interoperability, is that the participating CSPs need to develop and
maintain multiple vendor specific OPITMIS adapters to benefit from the entire toolkit. Another
EU-funded project is mOSAIC [MOS16], which aims to simplify the development and deploy-
ment of Multi-Cloud applications. One of the shortcomings of this approach is that the developers
need to rebuild their applications to integrate the mOSAIC API before using the framework.

2.1.2 Service Dependencies

Explicit knowledge about the dependencies is needed to support the management of SLAs by
customers and CSPs. As proposed in W2.3 and [TMT+16], a service dependency is a directed
relation between the services offered in the Cloud scenarios. It is expressed as a 1:n relationship

5In this chapter we do not address the SLA interoperability issue in a Multi-Cloud and refer the interested reader to
[Far14] for further details.

6SLOs constitute the measurable elements of an SLA that specify the Cloud service levels required by the customers
and to be achieved by the CSP.
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where one service (termed as "dependent") depends on one or multiple services (termed as "an-
tecedents"). A service can depend on data or resources provided by another service. A service s1

is dependent on service s2 if the provisioning of s1 is conditional to the provisioning of s2. We
classify dependencies based on their occurrence between services at the same hierarchical level
(horizontal dependencies), as well as between different levels in the hierarchy structure (vertical
dependencies) [WS09]. Dependencies can be further classified into direct and indirect dependen-
cies. Indirect dependencies occur between services which do not directly interact with each other,
but where a transitive relationship exists via an intermediate service. In many cases horizontal and
vertical dependencies occur at the same time and both dependencies affect the whole composition
hierarchy.
We assume that the dependencies between services and SLOs in the SLA are predefined, and de-
scribed using the suggested formats/guidelines from the relevant standards working groups. In
these groups, usually industry and academia design the SLA contents and define the type of de-
pendencies. These sets of dependencies are categorized in the SLA template. This template is
used for the creation of the dependency model and for the SLO validation.
Most existing approaches to manage dependencies within SLAs focus on the handling of indi-
vidual SLAs [LDK04, BPSMS07, AF08]. They do not consider information about dependencies
between services in compositions. In this chapter, we present a dependency representation model
which captures the information about services (each composed of a set of SLOs) and the de-
pendencies that occur between them. This model is then used for validating composite services
by checking the existence of service conflicts and SLO violations that occur due to different de-
pendency relations between services. The process of analyzing conflicts is both interactive and
iterative.

2.1.3 SLAs and the Multi-Cloud Environment

The varied stakeholders in the Cloud community have identified that specifying the measurable
SLOs in SLAs is useful to provide and manage the assurance from two perspectives, namely (a)
the service level being offered by a CSP, and (b) the service level requested by a CSC. Although
the state of the art predominantly focuses on the methodologies to build and represent these SLAs
[BPSMS07, AF08, GVB13, LLS12, TTLS14], most of these methodologies (a) focus on single
Cloud infrastructure and on the best matching CSP selection and (b) do not take into account the
information about dependencies between services. Overall, it is important to provide customers
with a comprehensive support that can enable an automatic detection of conflicts and explanations
for the dependent relations. Therefore, it is becoming an important issue for customers to make
decisions regarding how to (a) assess CSP’s qualitative and quantitative services, and (b) analyze
the composite service dependencies to handle SLOs’ violations and conflicts.

The Multi-Cloud perspective is considered in ESCUDO-CLOUD in the Use Cases 3 and 4.
Storing information in a flexible way among different Clouds allows to increase performance and
can also increase security by, for example, applying encryption techniques that split the informa-
tion between the Clouds. However, there are some concerns that have to be considered when using
different Cloud providers under the same Cloud service:

• Compatibility. We need to know if the interacting Clouds indeed have the compatibility to
actually inter-operate. This is assumed beforehand for Use Case 4, where a federated ap-
proach is considered, and where the collaboration agreements between Clouds are assumed
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to exist. This might not happen in Use Case 3, and thus the compatibility between Cloud
providers becomes a critical issue.

• Customer requirements. Choosing which Cloud providers are more “convenient” for a
Multi-Cloud storage service does not guarantee compatibility between Cloud providers.
The customer requirements need to be met across all the providers. As a result we need
mechanisms to assess the fulfillment of those requirements, being also able to decide what
are the best providers to use in the Multi-Cloud composition.

• Dependencies. Dependency relates to both compatibility and customers requirements.
While different Clouds might implement similar service metrics it might happen that there
are dependencies between them (i.e., different encryption algorithms or different compli-
ance of data protection regulations). This leads to potentially incompatible combinations of
Cloud providers and might entail the violation of customers’ requirements.

Over the recent years, the Multi-Cloud topics have become very active in the research com-
munity including ongoing EC projects. For example, MUSA7 uses security metrics to check the
fulfillment of the SLA and adapts the composition according to the monitoring events related to
security metrics. However, in MUSA there is still no way to (i) evaluate the level of security
provided by every provider of the Multi-Cloud, (ii) evaluate the dependencies between the com-
ponents of a Multi-Cloud that might end up in conflicts, and (iii) choose the optimal composition
based on a security assessment. Another Multi-Cloud project is Cumulus.8 Cumulus works with a
concept termed certifications, that are combined to create the SLAs of the Multi-Cloud. No secu-
rity assessment is considered to manage any aspect of the Multi-Cloud service provision. Cumulus
also defines a machine-readable SLA language, although the definition of such an SLA language
is out of scope for ESCUDO-CLOUD. An interesting concept inspired by Cumulus is the consid-
eration of vertical and horizontal composition that has been used in ESCUDO-CLOUD to analyze
the dependencies of metrics and assess the providers of a Multi-Cloud to create the optimal SLA
that fulfills the customer’s requirements. Supercloud9 also targets the topic of Multi-Cloud but
from a functional point of view, addressing the definition of interfaces to allow the inter-operation
of several Clouds. Although security is considered, as a constraint, in Supercloud to define the
optimal performance of the system, the security controls used are very limited and focused on the
optimal orchestration of the different Cloud providers. Finally, Cyclone10 also addresses Multi-
Cloud services but is primarily focused on techniques for the authentication between Clouds based
on identity-management infrastructures.

2.2 ESCUDO-CLOUD Innovation

On this background, we develop an innovative scheme for the Multi-Cloud model that aims to
solve the aforementioned issues by:

1. Offering a novel SLA-based Multi-Cloud service allocation approach that includes two main
outcomes: (a) the Multi-Cloud SLA (i.e., MCSLA) construction, and (b) service selection
and composition.

7http://www.tut.fi/musa-project/
8http://cumulus-project.eu/
9https://supercloud-project.eu/

10http://www.cyclone-project.eu/
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2. Presenting a novel dependency representation model which captures the information about
services and the dependencies that occur between them. This model is based on our initial
work in W2.3 and [TMT+16] for validating CSP SLAs. This will be developed further in the
upcoming deliverable D2.4. We enhance this model to fit into the Multi-Cloud environment
and is used for validating the MCSLA by checking the existence of conflicts and SLO-level
violations that occur due to different dependency relations across the Cloud services.

3. Validation of the proposed framework by evaluating actual CSP SLAs found on the public
CSA STAR (Security, Trust and Assurance Registry) [The16b] repository.

Part of the work presented in this chapter has been published in [TMT+16].

2.3 The Proposed Framework

In this section we present a quantitative service-level assessment of CSPs to find the service com-
position that satisfies all the customer requirements. We assume that all transactions between the
proposed framework and the CSPs are done through the Multi-Cloud middleware that communi-
cates with the APIs of all involved CSPs. In our framework, the selection of composite services
and the dependency management for composing the services is performed in five main stages as
shown in Figure 2.2. After the CSPs submit their SLAs and the customers specify their require-
ments in Stage (A), the services assessment and selection algorithms are used to score services in
Stage (B) according to the customer requirements. Based on this assessment, an optimum combi-
nation of services from multiple CSPs is chosen. This combination is used to create the MCSLA
in Stage (C). Based on the MCSLA services allocation, a dependency model is created in Stage
(D) to capture information about the composite services and the dependencies that occur between
them. This model is specified using a machine readable format to allow automated validation for
checking service conflicts and SLO compatibility issues in Stage (E).
Before detailing the proposed framework stages, we note that customers are only able to trust the
result of the proposed assessment as long as the information taken as input is reliable. In order
to guarantee the validity of this model, the SLAs provided by the participating CSPs are required
to come from a trusted source of information. In a real-world setup, the trust relationships can be
given by an Auditor performing a third-party attestation of the CSP SLA (e.g., through a scheme
such as the CSA Open Certification Framework (OCF) [The16a]). The audited SLAs are then
stored by the CSPs in a trusted repository of SLAs (e.g., the CSA STAR repository [The16b]) as
shown in Figure 2.2. This trust assumption relies on the fact that the certifications and the repos-
itory are trusted, and that the published SLAs were valid at the time of issuing the corresponding
certification or publishing the information in the repository.

2.3.1 Stage A: Customer Requirements Definition

During this stage, the customers create their set of requirements and specify their preferences based
on the same SLA template used by the CSPs to specify their offered services. Customers specify
requirements at the SLO level by defining the required value for each SLO. The process of model-
ing values to a quantitative metric is not straightforward as SLOs can have varied types/ranges of
qualitative and quantitative values. Hence, we use the notion of “service level” associated to each
SLO of the SLA11. An SLA consists of a set of services S = {s1, . . . ,sn}. Each service consists

11We introduced the notion of “service level” in [TMT+16].
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Figure 2.2: Proposed framework stages

of finite positive number o of SLOs ki; where i = 1, . . . ,o. Each SLO ki consists of m different
metric values vi; such that vi,1,vi,2, . . . ,vi,m. Each value implies a different service level offered by
the CSP and required by the customer. The total order of service levels of each ki is defined using
an order relation “≺i", such that vi,1 ≺ vi,2 ≺ . . .≺ vi,m. Each ki value is mapped to a progressive
numerical value according to its order. These numerical values are then normalized with respect

to the ki’s number of metric values (m)
1
m
≺ 2

m
≺ . . .≺ m

m
.

2.3.2 Stage B: Services Evaluation

The quantitative service level assessment of CSPs (for their match to the customer requirements)
is developed in this stage. Using this assessment, the services are scored based on the customer
requirement level for each service. The SLA services assessment is performed in the following
progressive phases:

Phase 1. Hierarchical Structure

The SLAs are modeled as a hierarchical structure as depicted in Figure 2.3, such that the first layer
of the hierarchy is the Root level, which determines the overall rank. The second and third levels
represent the main link to the services framework used by the CSP. The lowest level in the SLA
structure represents the actual SLOs committed by the CSP, where threshold values are specified
in terms of service metrics.
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Phase 2. Weights Assignment

In order to compare two CSP’s SLOs, the relative importance levels of the customer require-
ments for each SLO are assigned as weights. We utilize qualitative terms to specify the im-
portance of each SLO, where customers can assign qualitative terms as weights to each SLO to
indicate their priorities (Extremely-Important(EI), Highly-Important(HI), Low-Important(LI), and
Not-Required(NR)). These qualitative terms are further transformed to quantitative values. The
weights assignment is explained using a real-world case study in Section 2.4.

Phase 3. Services Quantification

In order to assess CSP’s SLAs, a measurement model for different SLOs should be defined. We
use a relative ranking model based on the Analytic Hierarchy Process (AHP) [Saa90]. The ranking
model defines the most important requirements used and their quantitative values. AHP is a widely
used method for solving problems related to Multi Criteria Decision Making (MCDM) [Zel82]
such as comparing, ranking, and selecting multiple alternatives, when each alternative has multiple
attributes. The advantages of AHP over contemporary multi-criteria methods are its ability to
handle composite qualitative and quantitative attributes, along with its flexibility and ability to
identify inconsistencies across requirements [Ram01]. The ranking model is based on a pairwise
relation of services provided by CSPs and required by customers such that:

CSP1,k/CSP2,k =
v1,k

v2,k
(2.1)

Each CSPi offers SLO k with value vi. Hence, CSP1,k/CSP2,k indicates the relative rank of CSP1

over CSP2 for a particular SLO k. Similarly, CSP1,k/CSCk indicates the relative rank of CSP1 over
the Cloud Service Customer CSC for k, which specifies whether CSP1 satisfies CSC requirement or
not. Thus, for each SLO we have a one-to-one Comparison Matrix (CM) of size (n+1)× (n+1)
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if there is a total of n CSPs and one CSC, so that:

CMk =



CSP1,k . . . CSPn,k CSCk

CSP1,k/CSP1,k . . . CSP1,k/CSPn,k CSP1,k/CSCk
...

. . .
...

...
CSPn,k/CSP1,k . . . CSPn,k/CSPn,k CSPn,k/CSCk

CSCk/CSP1,k . . . CSCk/CSPn,k CSCk/CSCk

 (2.2)

Next the relative ranking of all the CSPs and the customer for each SLO is calculated as a priority
vector12 (PVk) of the CMk.

PVk =
(CSP1,k CSP2,k . . . CSPn,k CSCk

N1,k N2,k . . . Nn,k Nc,k

)
(2.3)

N1,k is a numerical value representing the relative rank of CSP1 to other CSPs as well as the CSC
regarding an SLO k. Nc,k is the relative rank of the CSC required service level with respect to the
service levels offered by the CSPs. We demonstrate and validate the framework presented in this
section using a real-world case study in Section 2.4.

Phase 4. Services Selection

Based on the relative ranking of CSPs according to the CSC requirements (determined in the
previous phase), finding the best combination of SLOs that can collectively satisfy the customer
needs is performed in this phase. The selection of the set of feasible services with respect to a set of
customer requirements is performed using Algorithm 1. Each SLO priority vector (Equation 2.3)
serves as an input to this algorithm to determine the services from CSPs that are compatible with
the customer requirements.

Algorithm 1 Services selection for the case services are compatible

1: procedure MCSLASELECTION

2: if Nc,k = N1,k∨N2,k∨ . . .Nn,k then . Condition 1
3: Nm,k = N1,k∨N2,k∨ . . .Nn,k

4: else if Nc,k < N1,k∨N2,k∨ . . .Nn,k then . Condition 2
5: Nm,k = min(N1,k,N2,k, . . .Nn,k)

6: else if Nc,k > N1,k∨N2,k∨ . . .Nn,k then . Condition 3
7: Nm,k = max(N1,k,N2,k, . . .Nn,k)

8: end if
9: end procedure

In the algorithm we describe different conditions for services selection in comparison with the
customer requirements, which we explain using an example. Consider an SLO k offered by three
providers with three different service levels values v1,k, v2,k, v3,k and required by a customer with
value vc,k. After, the PVk is calculated using Equation 2.3 the following conditions take place:
First Condition: If Nc,k is equal to any of the three relative ranking values (e.g., Nc,k = N3,k), then
the MCSLA numerical relative ranking value (Nm,k) will be assigned the same value as N3,k which

12The priority vector is an approximation eigenvector of the comparison matrix which indicates a numerical ranking
of providers that specifies an order of preference among them, as indicated by the ratios of numerical values.
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means CSP3 is selected to provide the required service.
Second Condition: If the first condition is not satisfied and Nc,k is lower than the CSPs (e.g. Nc,k

< N1,k and N2,k, which means CSP1,k and CSP2,k are over-provisioning the customer’s require-
ment). Then Nm,k is equal to the minimum of the over-provisioning CSPs values (Nm is equal to
the closest value to the customer required value).
Third Condition: If neither the first nor the second conditions are satisfied, then the providers are
under-provisioning the customer requirement. Thus, the provider with the highest offered level is
chosen (the one closest to the customer’s requirement).

Phase 5. Services Aggregation

In this phase, we follow up with a bottom-up aggregation to give an overall assessment of the
service levels. To achieve that, the priority vector of each SLO (Phase 3) is aggregated with their
relative normalized weights assigned in Phase 2. This aggregation process is repeated for all the
SLOs in the hierarchy with their relative weights, which results in the ranking of all the Cloud
providers based on customer-defined requirements and weights.

PVaggregated =
[
PVk1 . . . PVkn

]
.
[
W
]T

(2.4)

W is the set of normalized weights of different SLOs such that W = wk1 ,wk2 , . . . ,wkn . Note that
the weights are normalized to satisfy the AHP requirements [Saa90]. PVk1 is the PV calculated for
SLO k1.

2.3.3 Stage C: Multi-Cloud Service Allocation

After finding the best combination of services that collectively satisfy “all” the customer needs
in Stage B, mapping this combination to the Multi-Cloud SLA (named MCSLA) is the target of
this stage. This is done by constructing the MCSLA template and then using the services scores
provided in the previous stage to build the composition of the feasible services. The main purpose
of constructing such an MCSLA is addressing the SLA interoperability issue in a Multi-Cloud.
In order to automatically and quantitatively evaluate the MCSLA, we use the classical “AND-OR”
trees to identify the set of services that satisfy the customer requirements as depicted in Figure 2.4.
This is done by forming compositions of services represented by each “AND” or “OR”. As inferred
from their name, “AND” relationships represent the “necessary” customer requirements and “OR”
relationships are more adequate to model “optional” requirements. Furthermore, if more than one
provider satisfies the customer requirement for a specific service, these providers are mapped using
“OR” relationships and then based on other criteria (e.g., cost, previous customers rating, etc.) the
best CSP is selected (i.e., the CSP with the lowest cost for example) as depicted in Figure 2.4.
After mapping the selected services to the MCSLA, a dependency model is created in the next
stage to capture information about MCSLA services and the dependencies that occur between
them.

2.3.4 Stage D: Dependency Model Creation

The approach for managing service dependencies builds on a dependency model, which is used to
capture information about various services (each composed of a set of SLOs) and the dependencies
that occur between them. In order to model services dependencies, it is important to (i) specify on
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which SLOs the fulfillment of a specific service depends and how it depends on these SLOs, (ii)
derive the expected requirements the dependency model should support, such as:

1. Support of different dependency types. The dependency model should support different
types of dependencies as well as various dependencies classifications (e.g., unidirectional
and bidirectional dependencies).

2. Support of multiple dependencies. One service can depend on several other services. These
dependencies could be the same or of different types.

3. Dependency model validation. It should be possible to automatically validate the depen-
dency model to avoid inconsistencies and conflicts.

We model a MCSLA by a tuple MCSLA = (S, l,−→S,K,−→K ,v), such that:

• S is a set of services s (i.e., composition of services offered by multiple CSPs as per their
SLAs) such that S = si,1� si,2� . . .� si,m; i = 1 . . .n where n is the number of CSPs and m
is the number of services.

– si, j specifies service s j provided by CSPi

– � is a generic composition operator, e.g., s1�s2 denotes the composite service formed
by composing services s1 and s2 in some way. We are interested in which services are
being composed but not how they are being composed, thus we model the composition
process using a generic composition operator that can represent any type of composi-
tion.

• MCSLA is associated with hierarchical levels l(s) ∈ {0,1, . . . ,n− 1}. It contains exactly
one service s with l(s) = 0, which is the root service. K is a set of SLOs with associated
hierarchy level l(k) = n.

• −→S ⊆ S× (S∪K) models service dependencies.
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• For two CSPs, CSPi and CSPj, we write si,1 −→S s j,2 if si,1 (dependent service) depends on
s j,2 (antecedent service) where i ∈ {1 . . .n} and j ∈ {1 . . .n}. If i = j then s1 and s2 are
provided by the same CSP.

• Each service is decomposed into a Boolean combination of SLOs k1⊗ k2⊗ . . .⊗ ko; where
⊗ ∈ ∨,∧ and o is the number of SLOs.

• K is a set of SLOs with associated hierarchy level l(k) = n for all k ∈ K where:

– Each SLO has a unique ID (i.e., SLOid).

– Each SLO has an SLA ID (i.e., SLAid). The SLA ID specifies the CSP providing this
SLO.

– −→K ⊆K×K models SLO dependencies. We have ki,1 −→K k j,2 if ki,1 (dependent SLO)
depends on k j,2 (antecedent SLO).

– v : K 7→ V is an assignment of values in V to SLOs, where V is the set of all metric
values of each SLO in K.

– ∀k ∈ K | @k ∈ K : v j,k � vi,k models the ordering over the possible CSPs for each SLO
using a preference relation �. vi,k and v j,k represent CSPi and CSPj offered values for
an SLO (k). We define vi,k � v j,k if only CSPi satisfies the customer requirement. If
both CSPs satisfy the customer requirement regarding SLO k (vi,k = v j,k) then the one
with min cost is chosen.

– A constraint on SLO dependency relation is specified using a constraint set C−→K
v ⊆

K×K×{=, 6=,<,≤,>,≥}. A constraint (ki,1,k j,2,≡)∈C−→K
v is satisfied if the values

of ki,1 and k j,2 are related by the given comparison, i.e., v(ki,1)≡ v(k j,2). A dependency
relation k1,i −→K k2, j is called valid, written valid

C−→K
v

(ki,1,k j,2), if the relation satisfies
all its constraints, i.e., ∀(k′i,1,k′j,2,≡) ∈ C−→K

v .(ki,1 = k′i,1 and k j,2 = k′j,2)⇒ v(ki,1) ≡
v(k j,2).

• We write the transitive closure of−→S as→+
S , i.e., si,1→+

S s j,2 if ∃si,3 ∈ S.si,1−→S si,3 and si,3→+
S

s j,2. A dependency fi,1→ f j,2, where f is either a service or an SLO and→∈ {−→S,−→K},
between two objects fi,1, f j,2 ∈ S∪K is called symmetric if also f j,2 → fi,1. Otherwise,
fi,1→ f j,2 is called non-symmetric. For example, f1 and f2 are symmetrically dependent if
fi,1→ f j,2 and f j,2→ fi,1.

• A MCSLA (S, l,−→S,K,−→K ,v) has to satisfy the following constraints:

i) Services do only depend on services of the same or the next lower hierarchy level:
∀si,1,s j,2 ∈ S.si,1 −→S s j,2⇒ l(si,1) = l(s j,2) or l(si,1)+1 = l(s j,2)

ii) Services do not depend on themselves: ∀s ∈ S.¬s −→S s

iii) All services depend directly or indirectly on an SLO: ∀s ∈ S∃k ∈ K.s→+
S k

A meta-model is then developed based on the presented dependency definitions. This meta-model
allows the description of services along with information on the MCSLA drafted for it.13 The
meta-model is specified using a machine readable format (allowing fully automatic validation)
such as an XML data structure using an XML Schema. In this Schema, service dependency

13We assume that all dependencies between services and SLOs in the SLA are predefined and described using relevant
scientific and multidisciplinary working groups as specified in Section 2.1.2.
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Figure 2.5: Dependency based MCSLA validation stages

information is modeled including the involved SLOs and their roles as dependent or antecedent as
well as the SLOs values.
Following the MCSLA and dependency model construction, the MCSLA is validated to check
service conflicts and different SLOs compatibility issues.

2.3.5 Stage E: MCSLA Validation

As depicted in Figure 2.5, the validation is done by first extracting the dependency model ID, SLO
ID, SLA ID, and the dependency ID of each two dependent SLOs14 defined in the XML schema.
Furthermore for each dependency relation, the antecedent and dependent SLO values are extracted.
This entails extracting the constraint comparative (i.e., =, 6=,<,≤,>,≥) and checking if the two
dependent SLOs’ values satisfy the constraint. If the constraint between dependent SLOs is not
satisfied, the validation scheme shows conflict between these two SLOs. The SLO ID, SLA ID,
dependency ID and dependent SLO ID of the affected SLO are saved in a list, while the evaluation
is continued to determine further conflicts. At the end of this process a list of all conflicts found
in the validated MCSLA with the conflict’s explanation is created which allows these conflicts to
be understood and resolved. Algorithm 2 details the necessary steps for extracting the values of
validating a dependency relation between SLOs in pseudocode notation.

2.4 Case Study: Evaluation of CSP’s SLAs based on STAR reposi-
tory values

This section shows an empirical validation of the proposed framework through two scenarios
that use real world SLA information derived from the Cloud Security Alliance’s STAR reposi-
tory [The16b]. This initial validation scenario demonstrates how a Cloud customer can apply the
framework presented in this section to compare side-by-side three different CSPs based on their

14Each SLO has a unique ID and an SLA ID. Moreover, each dependency relation in the same dependency model
has a unique ID.
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Algorithm 2 Validation
Input: String mcslaID, String depmodelID, String depID, String depSLO, String antSLO,
String depConst
Output: List affectedSLOs
List depList = NIL
Value depValue = NIL
Value antValue = NIL
List depModels = getModels(depmodelID, mcslaID)
for model ∈ depModels do

depList = getDependencies(depID, depmodelID)
for depend ∈ depList do

depValue=getValue(depend.depSLOvalue, depID)
antValue=getValue(depend.antSLOvalue, depID)
depConst=getString(depend.constraint, depID)
if validate(depValue, antValue, depConst) 6= true then

affectedSLOs.add(depend.depSLO)
end if

end for
end for

advertised SLAs (compliant with the hierarchy of Figure 2.3). Table 2.1 presents a sample dataset
used for this scenario, based on the information available in the CSA STAR repository, where
the values associated to 15 SLO metrics for the three selected CSPs are presented. In order to
perform a comprehensive validation, the selected SLOs comprised both qualitative and quanti-
tative metrics. The Qualitative metrics are specified as service levels using Definition 1 such as
monthly,weekly, and daily denoted as service levels level1, level2 and level3, which are modeled

as
1
3
,
2
3
,
3
3

. Furthermore, no,yes metrics are denoted as level0, level1 respectively. All CSP SLOs

are normalized to the customer requirements to eliminate masquerading.15 Weights assigned by
the customers to indicate their priorities are specified as numerical value such that EI and NR in-
dicate a relative value 1 and 0 respectively. HI and LI can be considered any intermediate values
between 1 and 0. In this analysis they indicate a relative rank value 0.7 and 0.3 respectively.

15The masquerading effect happens when the overall aggregated security level values mostly depend on those security
controls with a high-number of SLOs, thus negatively affecting groups with fewer, although possibly more critical,
provisions.
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Cloud SLA based on CSA STAR [The16b] CSPs Customer (CSC)

Services
SLOs

CSP1 CSP2 CSP3 req weight
name dep.

Root

Audit &
Compliance

AC

Planning
AC1

AC1.1 Dep1 yes no yes yes EI
AC1.2 level2 level3 level2 level3 HI

Independent
Audits AC2

AC2.1
Dep1 yes yes no yes HI
Dep2

AC2.2 Dep3 no yes yes no NR

AC2.3
Dep3 no yes yes yes EI
Dep4

AC2.4 yes no yes yes EI
AC3.1 no yes no yes EI
AC3.2 no yes yes yes EI

Regulatory
Mapping

AC3

AC3.1 Dep2 no yes no yes EI
AC3.2 Dep4 no yes yes yes EI
AC3.3 level2 level1 level3 level3 LI

Business
Continuity

BC

Testing
BC2

BC2.1 yes yes yes no NR
BC2.2 no yes no no NR

Policy
BC11

BC11.1 yes yes yes yes LI
BC11.2 level3 level2 level3 level3 LI

Regulatory AC3.1 no yes no yes EI
Mapping AC3.2 no yes yes yes EI

AC3 AC3.3 level2 level1 level3 level3 LI
Interface

Security IS
Application
SecurityIS1

IS1.1 Dep5 weekly weekly weekly weekly EI
IS1.2 Dep5 level1 level2 level1 level2 EI

Table 2.1: Excerpt of SLA’s from CSPs and customer requirements.
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We consider dependencies between services and SLOs which are going to be validated using
the Multi-Cloud validation model presented in Section 2.3.4 such that:
SLOs dependencies:

• AC2.1 depends on AC1.1 (this dependency relation is named as Dep1 in Table 2.1). This is
modeled as AC2.1−→K AC1.1 with constraint (AC2.1,AC1.1,=) ∈ C−→K

v .

• In the same way, Dep2, Dep3 and Dep4 are specified as AC2.1−→K AC3.1 with (AC2.1,AC3.1,
=) ∈ C−→K

v ), AC2.2 −→K AC2.3 with (AC2.2,AC2.3,=) ∈ C−→K
v and AC2.3 −→K AC3.2 with

(AC2.3,AC3.2,=) ∈ C−→K
v respectively.

• Finally, IS1.1 and IS1.2 are symmetrically dependent (i.e., Dep5) such that IS1.1−→K IS1.2
∧ IS1.2−→K IS1.1 with constraint (IS1.1, IS1.2,=) ∈ C−→K

v .

Service dependencies:

• AC depends on AC1, AC2 and AC3. Such that AC −→S AC1 ∧ AC −→S AC2 ∧ AC −→S AC3.

• BC depends on BC2, BC11 and AC3. Furthermore, IS depends on IS1. Each is further
depending on the SLOs as shown in Table 2.1.

• AC2 depends on SLOs AC3.1 and AC3.2 (shaded in Table 2.1).

• Since BC depends on AC3, and AC3 depends on SLOs AC3.1, AC3.2 and AC3.3 then using
transitive closure BC→+

S AC3.1 ∧ BC→+
S AC3.2 ∧ BC→+

S AC3.3 (shaded in Table 2.1).

The assessment and evaluation process for the Cloud SLOs defined in Table 2.1 is explained
step-by-step, in the rest of this section. For this evaluation technique, the customer specifies
his/her requirements at the lowest level of the SLA (i.e., SLO level) and considers different relative
importance (i.e., weights) for all of the SLOs. For the Audit & Compliance control of Cloud SLA,
there are three sub-services (AC1,AC2 and AC3) which are further divided to SLOs (AC1.1, AC1.2,
AC2.1, . . .). For AC1.2 the providers and the customer can specify their SLOs values from level1
to level3. Using the data shown in Table 2.1, Equation 2.1 is used to define the AC1.2 pairwise
relation such that:

CSP1,AC1.2/CSP2,AC1.2 =
2
3
/

3
3
, CSCAC1.2/CSP3,AC1.2 =

3
3
/

2
3

Thus, the CM of AC1.2 is calculated using Equation 2.2 as:

CMAC1.2 =


CSP1 CSP2 CSP3 CSC

CSP1 1 2/3 1 2/3
CSP2 3/2 1 3/2 1
CSP3 1 2/3 1 2/3
CSC 3/2 1 3/2 1


The relative ranking of the CSPs for AC1.2 is given by the priority vector of CMAC1.2 (PVAC1.2)
which is calculated using Equation 2.3.

PVAC1.2 =
( N1 N2 N3 Nc

0.2 0.3 0.2 0.3
)
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This implies that only CSP2 satisfies the customer requirement for AC1.2 as N2−AC1.2 = Nc−AC1.2.
Using Algorithm 1, since Nc−AC1.2 is equal to N2−AC1.2 then Nm−AC1.2 is equal to N2−AC1.2, this
means CSP2 is selected for providing AC1.2 SLO according to the customer requirement.
Similarly, we calculate CMAC1.1, PVAC1.1 and Nm−AC1.1 such that:

PVAC1.1 =
( N1 N2 N3 Nc

0.333 0 0.333 0.3333
)

This implies that both CSP1 and CSP3 satisfy the customer requirement for AC1.1. Using Algo-
rithm 1, Nm−AC1.1 is equal to N1−AC1.1 and N3−AC1.1, this means either CSP1 or CSP3 is selected for
providing AC1.1 SLO according to the customer requirement. Thus the customer can choose any
of two providers according to other factors such as cost or previous customers feedback.
The AC1 priority vector is then premeditated by aggregating PVAC1.1 and PVAC1.2 with the normal-
ized weights from the customer specified LI and HI for AC1.1 and AC1.2 respectively as:

wAC1 =
(AC1.1 AC1.2

1
1.7

0.7
1.7

)
PVAC1 is then calculated using Equation 2.4 such that:

PVAC1 =


PVAC1.1 PVAC1.2

CSP1 0.333 0.2
CSP2 0 0.3
CSP3 0.333 0.2
CSC 0.333 0.3


( wAC1

0.588
0.412

)

Therefore, this results into

PVAC1 =
( CSP1 CSP2 CSP3 CSC

0.278 0.124 0.278 0.32
)

This means that no provider is fully offering AC1 services regarding the customer requirements.
Both CSP1 and CSP3 are satisfying customer requirement AC1.1 and only CSP2 satisfies customer
requirement AC1.2. Therefore, a composition of services from different providers satisfies the AC1
customer requirements. The service composition for AC1, specified as kAC1.1∧ kAC1.2, is ((CSP1

16

OR CSP3) AND (CSP2)) as shown in Figure 2.6.
In a similar way as in AC1, PVAC2 is calculated. Where AC2 is composed of six SLOs (kAC2.1 ∧
kAC2.2∧ kAC2.3∧ kAC2.4)∧ (kAC3.1∨ kAC3.2) as shown in Figure 2.6 such that:

PVAC2 =


PVAC2.1 PVAC2.3 PVAC2.4 PVAC3.1 PVAC3.2

0.333 0 0.3333 0 0
0.333 0.3333 0 0.5 0.3333

0 0.3333 0.3333 0 0.3333
0.333 0.3333 0.3333 0.5 0.3333


Thus, the best service combination for satisfying customer requirement AC2 is offered by ((CSP1

OR CSP2) AND (CSP2 OR CSP3) AND (CSP1 OR CSP3) AND CSP2). Note that AC2.2 is not

16CSP1 here means the service offered by CSP1 which is AC1.2.
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required by the customer so it is not offered in the Multi-Cloud composite service as shown in
Figure 2.6.
Similarly, Regulatory Mapping priority vectors (PVAC3.1, PVAC3.2 and PVAC3.3) are calculated and
then Nm−AC3.1, Nm−AC3.2 and Nm−AC3.3 are determined. In a similar way the Testing, Policy, Regu-
latory Mapping and Application Security PVs are considered.
The set of SLOs that satisfy the customer requirements are selected as shown in the MCSLA
“AND-OR" tree which shows the CSPs fulfilling the customer requirements for each SLO using
AND/OR relations (i.e., Figure 2.6). Each SLO is specified as shown in Figure 2.6 in order to have
the overall MC composition. After the set of SLOs selection the MCSLA is validated to detect
SLOs conflicts.

AND

OROR

AND

MCSLA

AC
BC

AC2 AC1

AC1.1AC1.2

CSP3CSP1

CSP2

AC2.1

BC11

BC11.1

CSP2CSP3

AC3

AC3.1AC3.2

CSP2

CSP3

AND

IS

IS1

IS1.1IS1.2

CSP2
OR

CSP2CSP1

AC2.3

CSP2

AC2.4

OR

CSP3CSP1

ANDAND

AC3.3

CSP3

OR

CSP2

OR

CSP3

CSP1

OROR

OR ORAND

BC11.2

OR

Figure 2.6: MCSLA regarding customer requirements

MCSLA Validation

Errors are automatically detected based on the modeled dependencies, such that:

- Dep1 Validation: CO2.1 service level (level1) is equal to the CO1.1 service level (level1),
v(CO2.1) = v(CO1.1). Result: Valid for CSP1 only. CSP2 shows a conflict in Dep1. Thus,
only CSP1 is selected for offering CO2.1.

- Dep2 Validation: AC2.1 service level (level1) is equal to AC3.1 service level (level1). Result:
Valid for CSP2 however CSP1 shows a conflict in Dep2. Thus, only CSP2 is selected for offering
AC3.1. In the same way, Dep3 and Dep4 are validated.

- Dep5 Validation: IS1.1 service level (weekly which is level2) is equal to the IS1.2 service level
(level2). Result: Valid as CSP2 the one chosen to offer IS1.1 and IS1.2 satisfy the constraint.

At the end of the validation process, a list of all conflicts found in the MCSLA with the
conflicts explanation is created which allows these conflicts to be understood and resolved. Using
MCSLA “AND-OR” tree, the MCSLA can simply remove the SLO that is causing conflict (offered
by a specific CSP) and chooses another CSP to offer this SLO and validate the MCSLA again to
detect any further conflicts.
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2.5 Summary

The popularity of the Multi-Cloud model is on the rise given the larger variety, improved availabil-
ity of services and also the new functionalities available for the customers, e.g., selecting services
from multiple independent providers that best satisfy their requirements versus a single provider
offering. However, despite the economic and performance advantages advocated for the Multi-
Cloud, the actual process of selecting a set of suitable services from different providers is still a
challenging task. Given the increasing number of CSPs that offer a variety of services with differ-
ent capabilities and prices, the customers now need to (a) be able to parse the service specifications
and also (b) comparatively asses this variety of offered services, to be able to choose the composi-
tion of services that best match their requirements. Such solutions for service selection and SLA
management for the Multi-Cloud model are currently lacking. In this chapter, we have introduced
a novel SLA-based service selection methodology for the Multi-Cloud environment that provides a
MCSLA construction, and also a related services selection and management process. We have in-
vestigated the MCSLA approach while considering dependencies occurring across different SLOs.
Furthermore, we introduced a ranking algorithm to score services offered by the CSPs, as based
on their SLAs and according to the customer requirements. Our evaluation, based on actual case
studies, shows that our approach effectively selects a set of services, for the overall service com-
position, that satisfies the customer’s requirements.
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3. Data Distribution and Swapping for Access
Confidentiality

The Cloud is today characterized by the presence of a rich variety of Cloud providers offering
storage and computational services. This can be seen as an opportunity for users to operate over
multiple providers, thus enhancing security while maximizing efficiency of accesses.

In this chapter, we present a technique that takes advantage of multiple providers to protect
data and access confidentiality. Building on the shuffle index approach studied in Work Package 2,
we propose a technique that randomly partitions data among three independent Cloud providers
and ensures access confidentiality by dynamically re-allocating data at every access. Dynamic
re-allocation is enforced by swapping data involved in an access across the providers, in such a
way that accessing a given node implies re-allocating it to a different provider. This protection
technique destroys the ability of providers to build knowledge by observing accesses. The use of
three Cloud providers ensures uncertainty of the result of the swapping operation, even in presence
of collusion among them.

The remainder of this chapter is organized as follows. Section 3.1 presents the state of the art.
Section 3.2 discusses the innovation provided by ESCUDO-CLOUD. Section 3.3 recalls the basic
concepts of the shuffle index. Section 3.4 introduces the rationale of our approach. Section 3.5
describes our index structure working on three providers. Section 3.6 presents the working of
our approach, discussing protection techniques and data access. Section 3.7 analyzes protection
guarantees. Section 3.8 discusses the motivations behind our choice of swapping and of three as
the number of providers to be used, and provides some economic considerations for our approach.
Finally, Section 3.9 concludes the chapter.

3.1 State of the Art

The problem of protecting data confidentiality when moving to the Cloud is today widely recog-
nized and has received considerable attention by the research and development communities in the
last few years (e.g., [SD16, SD10, CDF+10, HQL+11]). The proposed approaches are based on
encryption and fragmentation techniques, or on their combined adoption, and guarantee efficiency
of access operations while protecting the sensitive content of the data [PFL15]. Specific index-
ing (e.g., [HIML02, SD10]) and keyword-based search techniques (e.g., [WCRL12]) have been
developed to support efficient access to encrypted data.

As already pointed out in Deliverable D2.1, simply protecting the confidentiality of data
content is not sufficient. Indeed, accesses to the data could reveal sensitive information, also
about the data content itself. The protection of access and pattern confidentiality (i.e., the con-
fidentiality of the specific accesses performed on the data and sequences thereof, respectively)
is therefore equally important, and several approaches addressing this problem have been pro-
posed [DFLS16, DFLS15, DFS15a, DFS15b, DFM+16, DFP+16]. Solutions for protecting access
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and pattern confidentiality are based on Private Information Retrieval (PIR) techniques. Such so-
lutions, however, do not protect content confidentiality and suffer from high computational costs
(e.g., [OS07]), even when different copies of the data are stored at multiple non-communicating
servers (e.g., [CMS99]). Recent approaches address the access and pattern confidentiality prob-
lems through the definition of techniques that dynamically change, at every access, the physical lo-
cation of the data. Some proposals have investigated the adoption of the Oblivious RAM (ORAM)
structure (e.g., [WSC08]), in particular with recent proposals aimed at making ORAM more prac-
tical such as ObliviStore [SS13b], Path ORAM [SvS+13], and Melbourne Shuffle [OGTU14].
ORAM has also been recently extended to operate in a distributed scenario [LO13, SS13a]. The
goal of these solutions is to reduce communication costs for the client and then make ORAM-based
approaches available also to clients using lightweight devices. The privacy guarantees provided by
distributed ORAM approaches however rely on the fact that storage servers do not communicate
or do not collude with each other. Alternative solutions are based on the adoption of a tree-based
structure (e.g., [LC04, YZZQ11]) to preserve content and access confidentiality.

The shuffle index has been first introduced in [DFP+11] and extended in [DFP+13a, DFP+13b]
to accommodate concurrent accesses on a shuffle index stored at one storage server. A prelimi-
nary investigation of the distribution of the shuffle index has been presented in [DFP+14]. We
have built on this preliminary result, and on the results of Work Package 2, by: formalizing and
providing a comprehensive analysis of the protection provided by the distributed shuffle index,
and by analyzing and studying the choice of distributing the shuffle index among three providers.

3.2 ESCUDO-CLOUD Innovation

The technique discussed in this chapter distributes the data structure over three different Cloud
providers. Each provider will store only a portion of the index structure and will then be able to
observe only a portion of the accesses over it. Access and pattern confidentiality is then obtained
by properly allocating data at initialization time, and by dynamically moving accessed data among
the Cloud providers as a consequence of each search operation. The proposed solution has been
designed considering the fact that Cloud providers may collude and exchange information among
each other to gain access to sensitive data.

The distribution of the shuffle index among three providers and the adoption of swapping for
protecting access and pattern confidentiality have been first proposed in [DFP+14]. The work of
ESCUDO-CLOUD project has considerably extended our prior work in the following directions.

• We have analyzed the protection provided by the distributed shuffle index approach, to mea-
sure the quality of the proposed solution. To this purpose, we studied how our solution is
able to guarantee access and pattern confidentiality, by measuring how quickly information
is destroyed and how effective our approach prevents knowledge accumulation in a Multi-
Cloud scenario. In our analysis, we considered two complementary scenarios, analyzing
how quickly information possessed by providers degrades as a consequence of shuffling,
and the limited information gain that providers can acquire by observing known accesses to
the index structure.

• We have analyzed and studied the choice of having three providers, clearly motivating our
choices in the definition of the proposed protection techniques. We also discussed the ad-
vantages obtained when distributing the shuffle index among three providers.

ESCUDO-CLOUD Deliverable D4.2



Section 3.3: Basic Concepts 35

Figure 3.1: An example of unchained B+-tree

• We have analyzed the economic advantages of our solution, which is based on the adoption
of multiple Cloud providers.

The work presented in this chapter has been published in [DFP+15b].

3.3 Basic Concepts

The shuffle index [DFP+15a, PFL15] is a dynamically allocated data structure offering access and
pattern confidentiality while supporting efficient key-based data organization and retrieval. At the
abstract level, a shuffle index is an unchained B+-tree (i.e., there are no links between the leaves)
with fan-out F. Since the shuffle index is a B+-tree: i) each node stores up to F−1 ordered values
and has as many children as the number of values stored plus one; ii) the tree rooted at the j-th
child of an internal node stores values included in the range [v j−1,v j), where v j−1 and v j are the
( j−1)-th and j-th values in the node, respectively; and iii) all leaves, which store actual tuples, are
at the same level of the tree, that is, they all have the same distance from the root node. Figure 3.1
illustrates an example of an unchained B+-tree. In this figure, and in the remainder of this chapter,
for simplicity, we refer to the content of each node with a label (e.g., a), instead of explicitly
reporting the values in it. In the example, root node r has six children (a, . . . , f ), each with three to
four children. For easy reference, we label the children of a non-root node with the same label as
the node concatenated with a progressive number (e.g., a1,a2,a3 are the children of node a). At the
logical level, each node is allocated to a logical identifier. Logical node identifiers are also used
in internal nodes as pointers to their children. At the physical level, each node is translated into
an encrypted chunk stored at a physical block. The encrypted chunk is obtained by encrypting the
concatenation of the node identifier and its content (values and pointers to children). Encryption
protects the confidentiality of nodes’ content and of the tree structure. Also, it provides integrity of
each node (as tampering would be detected) and of the structure overall (being the node identifier
and the pointers to children also encrypted in the block).

Retrieval of a value in the tree requires walking the tree from the root to the target leaf, fol-
lowing at each level the pointer to the child in the path to the target leaf. Being the index stored in
encrypted form, such an access requires an iterative process with the client downloading at each
level (starting from the root) the block of interest, decrypting it, and determining the next block to
be requested.

Although the data structure is encrypted, by observing a long enough sequence of accesses,
the provider (or other observers able to see the accesses) could reconstruct the topology of the
tree, identify repeated accesses, and possibly also infer sensitive data content [IKK14, PZM13].
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To protect data and accesses from such inferences, the shuffle index makes use of the follow-
ing three complementary techniques bringing confusion to the observer and destroying the static
correspondence between nodes and blocks storing them.

• Cover searches: in addition to the target value, additional values, called covers, are re-
quested. Covers, chosen in such a way to be indistinguishable from the target and to operate
on disjoint – apart from the root – paths in the tree (also disjoint from the path of the target),
provide uncertainty to the provider on the actual target. If num_cover searches are used, the
provider will observe access to num_cover+1 distinct paths and corresponding leaf blocks,
any of which could be the actual target.

• Cache: to avoid the provider learning when two accesses refer to the same target since they
would have a path in common, the shuffle index avoids intersections between subsequent
searches by locally storing at the client side a (plaintext) copy of the last num_cache visited
paths to target nodes. The cache keeps track of only actual searches and is managed accord-
ing to the Least Recently Used policy. If the target of an access already belongs to the local
cache, num_cover+1 covers are used in the access.

• Shuffling: at every access, the nodes involved in the access are shuffled (i.e., allocated to
different logical identifiers and corresponding physical blocks), re-encrypted (with a differ-
ent random salt and including the new identifier of the block) and re-stored at the provider.
Shuffling provides dynamic reallocation of all the accessed and cached nodes, thus destroy-
ing the otherwise static correspondence between physical blocks and their content. This
prevents the provider from accumulating knowledge on the data allocation as at any access
such an allocation is refreshed.

3.4 Rationale of the Approach

The approach presented in this chapter builds on the shuffle index by borrowing from it the base
data structure (encrypted unchained B+-tree) and the idea of breaking the otherwise static corre-
spondence between nodes and physical blocks at every access. It differs from the shuffle index
in the management of the data structure, for both storage and access (which exploit a distributed
allocation) and in the way the node-block correspondence is modified, applying swapping instead
of random shuffling, forcing the node involved in an access to change the block storing it (again
exploiting the distributed allocation). Also, it departs from the cache, not requiring any storage at
the client side.

The basic idea of our approach is to randomly partition data among three independent Cloud
providers, and, at every access, randomly move (swap) data retrieved from a provider to any of the
other two so that data retrieved from a provider would not be at the same provider after the access.
Since nodes are randomly allocated to providers, the path from the root to the leaf target of an
access can traverse nodes allocated at different providers. Since each provider should operate as if
it was the only one serving the client, our approach has to ensure uniform visibility at any access
at every provider. Uniform visibility is obtained by requesting, every time a node is accessed at
a given level at a provider, to access one additional block (distributed cover) at the same level at
each of the other providers.

The main characteristics of our approach are then the use of swapping (in contrast to shuffling)
and the use of three providers for managing the data structure.
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The reader may wonder why we are distributing the index structure among three providers,
and not two or four. The rationale behind the use of multiple providers is to provide limited
visibility, at each of the providers, of the data structure and of the accesses to it. In this respect,
even adopting two providers could work. However, an approach using only two providers would
remain exposed to collusion between them. In fact, the two providers, by merging their knowledge,
could reconstruct the node-block correspondence and compromise access and data confidentiality.
In fact, collusion, while unlikely, cannot be completely ruled out (or in any case some protection
must be provided against it). The data swapping we adopt, while providing better protection with
respect to shuffling in general, implies deterministic reallocation in the case of two providers and
could then cause exposure in case of collusion. Indeed, swapping forces an accessed node to be
reallocated to a block at a different provider from the one where the node was stored before the
access. The use of three then providers provides considerably better protection than the use of
two. Swapping ensures that data move from a provider to another at every access, providing non-
determinism in data reallocation (as the data could have moved to any of the other two providers),
even in presence of collusion among the three providers. While going from two providers to
three providers offers considerably higher protection guarantees, further increasing the number of
providers offers limited advantage, while instead increasing the complexity of the system.

3.5 Data Structure and Three-Provider Allocation

At the abstract level, our structure is essentially the same as the shuffle index, namely we consider
an unchained B+-tree defined over candidate key K, with fan-out F, and storing data in its leaves.
However, we consider the root to have three times the capacity of internal nodes. Since internal
nodes and leaves will be distributed to three different providers, assuming a three times larger root
allows us to conveniently split it among the different providers (instead of replicating it) providing
better access performance by potentially reducing the height of the tree. In fact, a B+-tree having
at most 3F children for the root node can store up to three times the number of tuples/values stored
in a traditional B+-tree of the same height. Formally, each internal abstract node na in the tree
stores a list v1, . . . ,vq of q values, with dF

2 e−1≤ q≤ F−1 (q≤ 3F−1 for the root node), ordered
from the smallest to the greatest, and has q+ 1 children. The i-th child of a node is the root of
the subtree containing the values val with vi−1 ≤ val < vi, i = 2, . . . ,q; the first child is the root of
the subtree with all values val < v1, while the last child is the root of the subtree with all values
val≥ vq. Each leaf node stores a set of values, together with the tuples in the dataset having these
values for attribute K. All the non-root nodes have to be at least 33% full. Figure 3.2(a) illustrates
an example of our abstract data structure.

At the logical level, the abstract root node translates to three logical nodes, say r0, r1, r2, each
storing one third of the values and pointers to children of the abstract root node. More precisely,
r0 stores values v1, . . . ,vi, with i = bq−2

3 c, and the corresponding pointers to children; r1 stores
values vi+2, . . . ,v2i+1, and the corresponding pointers to children; and r2 stores the remaining val-
ues v2i+3, . . . ,vq, and the corresponding pointers to children. (Note that values vi+1 and v2i+2 are
not necessary for the index definition and are then not explicitly stored in the obtained roots.) Fig-
ure 3.2(b) illustrates an example of logical index representing the abstract index in Figure 3.2(a)
where the abstract root r is represented by three logical nodes, r0, r1, r2, each having two of the six
children of r. Each (non-root) abstract node na translates to a logical node n and is allocated to a
logical identifier n.id, used also to represent the pointer to n in its parent. To regulate data distribu-
tion at the different providers, we distinguish three subsets IDi, i ∈ {Y,G,B}, of logical identifiers
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ABSTRACT INDEX

(a)

LOGICAL INDEX

(b)

PHYSICAL INDEX

(c)

Figure 3.2: An example of abstract (a) and logical (b) index together with its physical representation (c) at
three providers

corresponding to the physical addresses at each of the storage providers Si, i ∈ {Y,G,B}. Allo-
cation of abstract nodes to logical identifiers is defined through an allocation function, formally
defined as follows.

Definition 3.5.1 (Distributed allocation). Let N a be the set of abstract nodes in a distributed index
I , SY , SG, SB be the providers storing I , and IDY , IDG, IDB be the sets of logical identifiers at
provider SY , SG, SB, respectively. A distributed allocation function is a bijective function φ: N a→
IDY ∪ IDG ∪ IDB that associates a logical identifier with each abstract node.

Given an abstract node na, φ(na) determines the identifier of the logical node n where na is
allocated, denoted n.id. In the following, we denote with σ(id) the provider at which the logical
node with identifier id is stored. Note that the order of logical identifiers is independent from
the node content. Also, the allocation of logical nodes to physical blocks and, more in general,
to providers does not depend on the topology of the abstract structure. In other words, a node
may be stored at a different provider with respect to its parent and/or its siblings. An example of
distribution of the index in Figure 3.2(a) is illustrated in Figure 3.2(b). For the sake of readability,
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logical identifiers are reported on the top of each node and blocks are color-coded (yellow for SY ,
green for SG, and blue for SB, corresponding to light, medium, and dark gray in b/w printout). For
simplicity and easy reference, logical identifiers start with a letter denoting the provider where the
corresponding block is stored (Y for SY , G for SG, and B for SB), and their first digit denotes its
level in the tree. For instance, G24 is the logical identifier of a node at level 2 and stored at provider
SG.

A distributed index I can be represented, at the logical level, as a pair 〈N , (SY ,SG,SB)〉, with
N the set of logical nodes composing it, and SY , SG, and SB the storage providers where these
nodes are physically stored. To guarantee distribution among the different providers (and provide
uniform visibility at every provider in access execution), the distributed allocation function guar-
antees that at level 1 (children of the root) there is at least one node stored at each storage provider,
and that each non-root node in the index has at least one child stored at each provider. At starting
time, we then assume the structure to be evenly distributed at the level of node, meaning that the
children of each node are equally distributed among the three providers (i.e., each provider will be
allocated one third ±1 of the children of every node). We also assume the structure to be evenly
distributed both globally and for each level in the tree. Figure 3.2(b) represents an example of
logical distributed index where the children of each node, the nodes in each level, and the nodes
in the tree are evenly distributed to providers.

At the physical level, logical addresses are translated into physical addresses at the three
providers. Node content is prefixed with a random salt and encrypted in Cipher Block Chain-
ing (CBC) mode with a symmetric encryption function. The result of encryption is concate-
nated with the result of a Message Authentication Code (MAC) function applied to the encrypted
node and its identifier, producing an encrypted block b allocated to a physical address. Formally,
the block b representing a node n is the concatenation E ||T of two strings obtained as follows:
E = Ek1(salt||n) and T = MACk2(id||E), with E a symmetric encryption function, k1 the encryp-
tion key, MAC a strongly unforgeable keyed cryptographic hash function with key k2, and salt a
randomly chosen value. The presence of the node identifier in each block enables the client to as-
sess the authenticity and integrity of the block content and, thanks to the identifiers of the children
stored in each node, also of the whole index structure. Figure 3.2(c) illustrates the physical repre-
sentation of the logical index in Figure 3.2(b). In the following, for simplicity and without loss of
generality, we assume that the physical address of a block corresponds to the logical identifier of
the node it stores. The view of each provider Si, with i ∈ {Y,G,B}, corresponds to the portion of
the physical representation in Figure 3.2(c) allocated at Si. Note that each provider can see all and
only the blocks allocated to it. In the following, we use the term node to refer to an abstract data
content and block to refer to a specific memory slot in the logical/physical structure. When either
terms can be used, we will use them interchangeably.

3.6 Working of the Approach

In this section, we illustrate how access execution is performed adopting distributed covers and
swapping protection techniques to guarantee data and access confidentiality.

3.6.1 Distributed Covers

Like in the shuffle index, retrieval of a key value (or more precisely the data indexed with that key
value and stored in a leaf node) entails traversing the index starting from the root and following,

ESCUDO-CLOUD Deliverable D4.2



40 Data Distribution and Swapping for Access Confidentiality

at every node, the pointer to the child in the path to the leaf possibly containing the target value.
Again, since data are encrypted, such a process needs to be performed iteratively, starting from
the root to the leaf, at every level decrypting (and checking integrity of) the retrieved node to
determine the child to follow at the next level. Since our data structure is distributed among three
providers and the allocation of nodes to providers is independent from the topology of the index
structure, the path from the root to a target leaf may (and usually does) involve nodes stored
at different providers. For instance, with reference to Figure 3.2, retrieval of a value d1 entails
traversing path 〈r1,d,d1〉 and hence accessing blocks G01, Y12, and B24 each stored at a different
provider. Retrieval of value a3 entails traversing the path 〈r0,a,a3〉 and hence accessing blocks
Y01, B12, and B23, the first stored at provider SY and the last two stored at provider SB. Since each
provider can observe different iterations and, after a long enough sequence of observations, also
infer the levels associated with blocks, we aim at ensuring a uniform visibility at every provider
and at each access. In other words, we want every provider to observe, for every search, the access
to one block at each level, with each provider then operating as if it was the only one serving
the client. This approach guarantees that each provider has uniform visibility over every access,
independently from the allocation of the target of the search. (Note that even if only one block is
accessed at every level, no information is leaked to the provider on the tree topology, since: i) the
accessed blocks may not be actually in a parent-child relationship, and ii) the content of accessed
blocks changes just after the access.) Our requirement of uniform visibility at each provider is
captured by the following property.

Property 3.6.1 (Uniform visibility). Let I = 〈N ,(SY ,SG,SB)〉 be a distributed index, and N =

{n1, . . . ,nm} be the set of logical nodes accessed by a search. The search satisfies uniform visibility
iff for each Si, i ∈ {Y,G,B}, and for each level l in I , ∃! n ∈ N such that: 1) σ(n.id) = Si; and 2)
n is at level l in I .

In other words, for each access, one and only one node per level should be accessed at ev-
ery provider. To illustrate, our two sample accesses above do not satisfy uniform visibility. For
instance, in the first access, provider SG is accessed for level 0 (G01), but not for levels 1 and 2.
To satisfy uniform visibility, we complement, at each level, the access required by the retrieval of
the target value with two additional accesses at the providers that do not store the target block at
that level. We call covers these additional accesses as they resemble cover searches of the shuf-
fle index, although they have also many differences (e.g., they cannot be pre-determined as data
allocation is unknown, they may not represent a path in the distributed index, and they are not
observed by the same provider observing the target). Stressing their distributed nature, we term
them distributed covers, defined as follows.

Definition 3.6.1 (Distributed cover). Let I = 〈N ,(SY ,SG,SB)〉 be a distributed index, and n be
a node in N . A set of distributed covers for n is a pair of nodes (ni,n j) in N such that the
following conditions hold: 1) n,ni,n j belong to the same level of I ; and 2) σ(n.id) 6= σ(ni.id),
σ(n.id) 6= σ(n j.id), and σ(ni.id) 6= σ(n j.id).

As stated by the definition above, distributed covers for a node n are a pair of nodes (ni, n j)
that belong to the same level l of the structure as n, and such that the three nodes are allocated at
different providers. For instance, distributed covers for Y12 could be any of the following pairs:
(B11,G11), (B11,G12), (B12,G11), (B12,G12). Similarly, at the leaf level, the distributed covers for
B24 could be any pair of nodes (Y2∗,G2∗), with ∗ any value between 1 and 7 (e.g., (Y23,G21)). The
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distributed covers of a root node are the roots at the other two providers (e.g., (G01,B01) are the
distributed covers for Y01).

With the consideration of distributed covers, to guarantee uniform visibility at every provider,
access execution works as follows. Again, an iterative process is executed starting from the root
to the leaf level. First, the client retrieves the roots at all the three providers and decrypts them
to determine the target root (i.e., the one going to the target value) and the target child node n to
visit. It also randomly chooses two distributed covers for n. The client requests access to n and its
distributed covers to the respective providers. It then decrypts the accessed nodes and iteratively
performs the same process until the leaves (target and distributed covers) are reached. As an
example, consider the data structure in Figure 3.2(b) and assume node d1 to be the target. The
nodes along the path to the target of the accesses are 〈r1,d,d1〉 entailing accesses to target blocks
〈G01,Y12,B24〉. Assume that distributed covers (Y01,B01), (G11,B11), and (G21,Y23) are used for
G01, Y12, and B24, respectively. Figure 3.3(a) illustrates the nodes involved in the access, either
as target (denoted with a bullet) or as distributed covers, at each level also indicating the parent-
child relationship among them at the abstract level. Figure 3.3(b) provides the same information
distinguishing the nodes accessed at every provider. Note that each provider simply observes
a sequence of three accesses to three blocks, while the node content (reported in the figure for
clarity) is not visible to the providers.

Even if any pair of nodes at the same level as n, but allocated at the other two providers,
can work as distributed covers for n, in the choice of distributed covers we need to take into
consideration the fact that accessed nodes are reallocated. In fact, when n is moved to a different
block, the pointers to n in its parent must be updated to maintain consistency of the index structure.
Therefore, the nodes involved in an access should always form a sub-tree, possibly including paths
of different lengths. Each distributed cover at level l should then be child of the node along the
path to the target at level l−1 or of one of its distributed covers. This is formally captured by the
following definition.

Definition 3.6.2 (Chained distributed covers). Let p = {n0, . . . ,nh} be the path (sequence of
nodes) to the target, and C (p) = 〈(n0i,n0 j), . . . ,(nhi,nh j)〉 be the sequence of distributed covers
for the nodes in the path. C (p) is chained if ∀x = 1, . . . ,h, nxi and nx j are children of one of the
nodes in {nx−1,n(x−1)i,n(x−1) j}.

In other words, every node in C (p), except for the roots, must have its parent in C (p). The
distributed covers in Figure 3.3(a) are chained as the covers at every level are children of a node
accessed (either as target or cover) in the level above. Note that while in the example (for simplicity
and readability of the figure) every accessed node has one accessed child, such a condition is not
needed. In fact, Definition 3.6.2 requires every node to have its parent in the access (so to enable
update of pointers to the node in its parent), while a node can have no children in the access. The
reason for such a choice is twofold: it provides better protection to the parent-child relationship
among accessed nodes, and it permits to find more easily distributed covers for target nodes. For
instance, Y26 (d4) could have also been used instead of Y23 (e4) as one of the covers for B24, together
with G21 still satisfying Definition 3.6.2.

3.6.2 Swapping

A desired requirement of our approach is that data retrieved (either as target or as cover) in an
access are stored after the access at a different provider. We capture such a requirement with a
property of continuous moving as follows.
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ACCESS

(a) (b)

SWAPPING

(c) (d)

AFTER ACCESS

(e) (f)

Figure 3.3: Logical (a) and physical (b) view of the nodes/blocks accessed searching for value d1; swapping
among accessed nodes/blocks (c-d); logical (e) and physical (f) view of the effects of the swapping.
Target nodes/blocks are denoted with •
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Property 3.6.2 (Continuous moving). Let I = 〈N ,(SY ,SG,SB)〉 be a distributed index, and N =

{n1, . . . ,nm} be the set of nodes in N accessed as target or distributed covers by a search. The
search satisfies continuous moving iff, for each node n ∈ N, the provider σ(n.id) where n is stored
before the access is different from the one where it is stored after the access.

Continuous moving prevents providers from building knowledge based on accesses they can
observe, since a node is immediately removed from a provider after being accessed. For instance,
providers will not be able to observe repeated accesses anymore. We guarantee satisfaction of this
property by swapping the content of the blocks accessed at every level. Swapping is defined as
follows.

Definition 3.6.3 (Swapping). Let ID be a set of logical identifiers. A swapping for ID is a random
permutation π : ID→ ID such that ∀id ∈ ID, σ(id) 6= σ(π(id)).

Figure 3.3(d) illustrates a possible swapping among the nodes/blocks accessed at each provider
by the search in Figure 3.3(a-b), resulting in swapping content among them as depicted in Fig-
ure 3.3(c). For instance, swap Y01→ G01, G01→ B01, B01→ Y01 causes r0 to move to G01, r1 to
move to B01, and r2 to move to Y01. Figure 3.3(e) illustrates the effect of such a swapping on the
data structure at the logical level. Figure 3.3(f) shows the changes in the content of blocks stored at
each provider. Note that before re-writing blocks at the providers, the content of the corresponding
nodes is re-encrypted with a different random salt that changes at every access. The adoption of
a different random salt in node encryption and the concatenation with a different node identifier
guarantees to produce a different encrypted block, even if the content represents the same node.
This makes it impossible for storage providers to track swapping operations. Given an index char-
acterized by a distributed allocation function φ and a swapping function π over a subset ID of
the identifiers in the distributed index, the allocation function resulting from the swap is defined
as: φ(na) = π(φ(na)) iff φ(na) ∈ ID; φ(na) = φ(na), otherwise. Note that the assignment function
resulting from the application of a swap π still represents a distributed assignment function, since
π is a permutation function. For instance, with reference to the example in Figure 3.3, we note
that each node is associated with exactly one identifier and vice versa before and after the access.
Figure 3.4 illustrates the logical distributed index before and after the access searching for d1 and
the swapping among accessed nodes, which preserves the correctness of the allocation function
(Definition 3.5.1).

Moving nodes among providers may reduce the number of children at a provider for some
nodes. In the worst case, a node may be left with no children on one of the three providers.
We note however that, since we initially define a balanced allocation and in traditional systems
the fan-out of the tree is high (in the order of some hundreds), the probability that a node is left
without children on one of the providers is extremely low, due to a natural regression to the mean
that reduces the stochastic drift. To completely solve this risk, as illustrated in the next section,
we check that swapping does not create configurations where a provider is not represented in the
descendants of a node.

3.6.3 Access Execution Algorithm

Figure 3.5 illustrates the pseudocode of the algorithm, executed at the client-side, searching
for a value in our approach. The algorithm visits the index level by level, starting from the root.
At each level l the algorithm chooses two distributed covers for the node along the path to the
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LOGICAL INDEX BEFORE THE ACCESS

SWAPPING

d1 d2 d3 d4 f1 f2 f3
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b
G11 Y11B11

c
G12 Y12B12

B22Y22 Y23G23Y24 G24B25 Y25G25 Y26
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G22B26Y27 G27B24G23 B21

b1 b2 b3 b4
Y21 G26B27 G21

r1 r2r0
G01Y01 B01

LOGICAL INDEX AFTER THE ACCESS

Figure 3.4: Evolution of the logical index in Figure 3.2 for the search of d1 illustrated in Figure 3.3

target, accesses the target and cover blocks, decrypt them, and swap their content. To guarantee
consistency of the index, swapping is also reported in the parents of accessed nodes, which are
then re-encrypted and re-written at the storage providers. Finally, the algorithm returns the leaf
node storing the target value.

3.7 Protection Analysis

We evaluate the guaranteed offered by our approach with respect to guaranteeing confidentiality
of the accesses against possible observers. In particular, we consider the providers as our ob-
servers as they have the most powerful view over the stored data as well as of the accesses to them
(Section 3.7.1). Guaranteeing confidentiality of the accesses means hiding from the providers the
correspondence (as our distribution and swap aim to do) between nodes and blocks where they
are stored. We perform our analysis considering two different, opposite, starting scenarios. The
first one represents a worst case scenario where, at initialization time, each provider knows the
node-block correspondence exactly (Section 3.7.2). We then illustrate how our approach is able
to quickly destroy the knowledge of the providers at every access, even in presence of collusion
among them. The second scenario considers instead the case where the providers do not have
any knowledge at initialization time about node-block correspondence (Section 3.7.3). We then
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/* I = 〈N ,(SY ,SG,SB)〉: distributed index with height h */

INPUT target_value : value to be searched in I
OUTPUT n : leaf node that contains target_value

MAIN
1: Parents := download and decrypt block Y01 from SY , block G01 from SG, and block B01 from SB

2: let π be a permutation of identifiers of nodes in Parents s.t. σ(id) 6= σ(π(id))
3: swap nodes in Parents according to π

4: for l:=1. . .h do /* visit the index level by level*/
5: target_id := id of the node at level l along the path to target_value
6: randomly choose cover[1] and cover[2] s.t. they are children of Parents and

σ(target_id) 6= σ(cover[1]), σ(target_id) 6= σ(cover[2]), and σ(cover[1]) 6= σ(cover[2])
7: Read := download and decrypt each block with identifier id∈{target_id,cover[1],cover[2]} from σ(id)
8: let π be a permutation of identifiers of nodes in Read

s.t. σ(id) 6= σ(π(id)) and each n∈Parents has at least one child at SY ,SG,SB

9: if π does not exist, then goto 6
10: swap nodes in Read according to π

11: update pointers to children in Parents according to π

12: encrypt and write each node n∈Parents at provider σ(n.id)
13: target_id := π(target_id)
14: cover[1] := π(cover[1]), cover[2] := π(cover[2])
15: Parents := Read
16: encrypt and write each node n∈Parents at provider σ(n.id)
17: return node n∈Read with n.id = target_id

Figure 3.5: Access algorithm

illustrate how our approach prevents the providers from building knowledge on the node-block
correspondence based on their knowledge on the accesses being performed.

3.7.1 Modeling Knowledge

The storage providers know (or can infer from their interactions with the client) the following
information: the total number of blocks (nodes) in the distributed index; the height h of the tree
structure; the identifier of each block b and its level in the tree; the identifier of read and written
blocks for each access operation. On the contrary, they do not know nor can infer the content and
the topology of the index (i.e., the pointers between parent and children), thanks to the fact that
nodes are encrypted. For simplicity, but without loss of generality, we focus our analysis only on
leaf blocks/nodes, since leaves are considerably more exposed than internal nodes. Internal nodes
are more protected since they are accessed, and hence involved in swapping operations, more often
than leaf nodes.

Let N be the set of logical leaf nodes in the unchained B+-tree, and B be the set of blocks
storing them at any of the providers. We assume data to be equally distributed among storage
providers SY , SG, and SB (i.e., the number N of nodes stored at each provider is equal to |N |3 ). For
concreteness and simplicity of notation, we assume that |N | is a multiple of 3, and that blocks
b1, . . . ,bN are at SY , blocks bN+1, . . . ,b2N are at SG, and blocks b2N+1, . . . ,b3N are at SB.

The knowledge of a provider Sx, with x ∈ {Y,G,B}, on the fact that a node n is stored at a
block b can be expressed as the probability Px(b,n) that Sx knows that node n is stored at block b.
Probability Px(b,n) has value 1 if the provider knows with certainty that n is stored at b, and value

1
|N | for every n if the provider does not have any knowledge on node-block allocation (i.e., the
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Figure 3.6: Probability matrices in the worst case scenario at initialization (a,c,e) and after the first access
(b,d,f) to blocks b1, bN+1, b2N+1 with: no collusion (a,b), collusion among two providers (c,d), and full
collusion (e,f)

block could contain n or any other node in N ). The overall degree of uncertainty of a provider Sx

about the block containing a node n can be represented as the entropy Hx
n , computed on the non-

zero probabilities Px(bi,n), for all bi ∈ B , that is, Hx
n =−∑

|B|
i=1 Px(bi,n) · (log2 Px(bi,n)). Note that

Hx
n = 0 means that the provider knows exactly the block storing n. In fact, in this case Px(bi,n) = 1

for each block bi and then Hx
n =−∑

|B|
i=1 1 · (log2 1) = 0. On the contrary, Hx

n = log2 |N |means that
the provider has complete uncertainty about such a correspondence. In fact, Px(bi,n) = 1

|N | for

each block bi and then Hx
n =−∑

|B|
i=1

1
|N | · (log2

1
|N |) = log2 |N |.

3.7.2 Knowledge Degradation

In the worst case initialization scenario, every provider Sx, with x ∈ {Y,G,B}, initially knows the
exact correspondence between nodes and its blocks (i.e., Hx

n = 0 since Px(b,n) = 1 if n is allocated
at b, Px(b,n) = 0 otherwise, with n a node in N and b one of the blocks stored at Sx). We show,
for each node n, the evolution of entropy Hx

n (i.e., knowledge degradation) for each provider as
a consequence of a random sequence of accesses. For concreteness, we refer the discussion to
provider SY (but the same applies to SG and SB) and write P(b,n) instead of PY (b,n) and Hn instead
of HY

n .

No collusion. We first consider the natural configuration where providers do not collude, that is,
each provider has knowledge of the overall sets of nodes but observes only the encrypted content
and accesses to the blocks it stores. At initialization time, SY has complete knowledge on the
node-block correspondence for the blocks it stores, while it does not have any information on
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the allocation of nodes to blocks stored at the other two providers. For simplicity, we assume
each node ni to be initially allocated at block bi (i.e., P(bi,ni)=1 and P(bi,n j)=0). Figure 3.6(a)
illustrates the probability values for the different nodes and blocks: each cell [bi,n j] in the matrix
reports the value of P(bi,n j). Consistently with the fact that SY does not have any information
on blocks at the other providers, all such blocks are summarized in a single row bother in the
matrix, which reports the probability that n j is not at SY (i.e., bother is the sum of the probabilities
P(bi,n j) with bi a block not at SY ). We now illustrate how such probability values (and then
the entropy) evolve as accesses are executed. In the discussion, we use bi to denote the whole
row in the probability matrix associated with block bi, that is, the vector over cells [bi,n j], with
j = 1, . . . ,3N. Operations over rows are to be interpreted to operate cell-wise.

Consider the first access observed by SY and let by (storing ny) be the block accessed. Because
of swapping, after the access, block by will certainly not contain anymore node ny since the node
has moved to one of the blocks at the other two providers (with equal probability among the
blocks, as SY does not have any knowledge over them). Hence, P(by,ny) will change to 0 (from 1
before the access) while P(bother,ny) = 1 (from 0 before the access). Similarly, by could contain
after the access, with equal probability, any of the other 2N nodes previously stored at one of the
other providers. For any n j with j > N, P(by,n j) will change to 1

2N (from 0 before the access)
and P(bother,n j) will change to 2N−1

2N (from 1 before the access). Assuming, as an example, that
the first access is for block b1, Figure 3.6(b) illustrates the probability matrix after the access
execution. Extending the reasoning to a sequence of accesses, we can formalize the changes to the
probability matrix due to the observation of the access to a block by as follows (the values in the
right side of the formulas are those before the access):

• by := 1
2N bother;

• bother := by +
2N−1

2N bother;

• bi := bi, with i 6= y and i 6= other.

Note that the first access described above is indeed an instantiation of these formulas. In fact, with
reference to our example, P(b1,n1) changes from 1 to 1

2N ·0 = 0 after the access.
To evaluate the increase of entropy due to changes in allocation probabilities, we performed

a series of simulations with indexes of different sizes. In the simulations, we considered both
uniform and non-uniform distributions of the logical access requests and this aspect did not have
a detectable impact on the results. Figure 3.7 shows the results of the simulations and confirm that
the initial knowledge of the provider suffers rapid degradation, independently from the index size.
While large indexes show a less steep increase in the entropy trend, this is balanced by the greater
uncertainty on the node-block correspondences due to their large number of leaf nodes/blocks.

Collusion between two providers. We now evaluate protection (i.e., destruction of knowledge for
this scenario) in presence of collusion between two providers. For concreteness and easy notation,
let us assume the two colluding providers to be SY and SG. By colluding, SY and SG combine
their knowledge of the initial node-block correspondence, producing the initial probability matrix
illustrated in Figure 3.6(c), where bother now refers to the blocks at provider SB, over which SY

and SG have no knowledge. Also, SY and SG can combine their observations on the accesses.
Assume then the initial configuration and a first observation on the access of block by (storing ny

at SY ) and block bg (storing ng at SG). Let us first consider block by and node ny, as the same (just
substituting g for y and vice versa) applies to bg and ng. Because of swapping, after the access,
block by will certainly not contain anymore node ny since the node content has been moved to
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Figure 3.8: Entropy evolution for an index with 1200 leaf nodes distributed among three (a) and two (b)
storage providers

either bg (with probability 1
2 ) or to any other (equiprobable) block at SB (again with probability 1

2 ).
Hence, P(by,ny) will change to 0 (from 1 before the access) while P(bg,ny) = P(bother,ny) =

1
2

(from 0 before the access). Similarly, by could contain after the access, either ng (with probability
1
2 ) or any of the nodes previously stored in bothers (each with equal probability 1

2N ). Formally,
P(by,ng) =

1
2 (from 0 before the access) while for any n j with j > 2N, P(by,n j), will change to 1

2N
(from 0 before the access) and P(bother,n j) will change to N−1

N (from 1 before the access). Assume,
as an example, that the first access is for block b1 at SY and for block bN+1 at SG, Figure 3.6(d)
illustrates the probability matrix after the access execution. Extending the reasoning to a sequence
of accesses, we can formalize the changes to the probability matrix due to the observation of the
access to blocks by and bg as follows (the values in the right side of the formulas are those before
the access):

• by := 1
2(bg +

1
N bother);

• bg := 1
2(by +

1
N bother);

• bother := 1
2(by +bg)+

N−1
N bother;

• bi := bi, with i 6= y, i 6= g, and i 6= other.

We performed some simulations evaluating the evolution of entropy in presence of collusion
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between two providers comparing it with the base case where no collusion exists. Figure 3.8(a) il-
lustrates the results of such simulations for a data structure with |N |= 1200, where the solid black
line corresponds to the base case of no collusion and the dotted blue line (darker in b/w printout) to
the case where two providers collude. We note that even if the entropy shows a less steep increase
than in the scenario with no collusion (as it is to be expected given the combined knowledge of the
two providers), our approach still provides considerable degradation in the knowledge of colluding
providers. In fact, even colluding, the two providers still cannot detect whether an accessed node
has been allocated to one of them or to any of the other blocks not under their control.

Full collusion. We now evaluate protection (i.e., destruction of knowledge) in presence of col-
lusion among all the three providers. By colluding, the providers can share information on the
initial node-block correspondence, which would then be completely known to them as shown in
Figure 3.6(e), and on the block accessed. Assume then the initial configuration and a first obser-
vation on the access to blocks by (storing ny at SY ), bg (storing ng at SG), and bb (storing nb at SB).
Again, let us first consider block by and node ny, as the same applies to bg and ng, and to bb and
nb. Because of swapping, after the access block by will certainly not contain anymore node ny as
the node has moved either to bg or to bb, each with probability 1

2 . Hence, P(by,ny) will change
to 0 (from 1 before the access) while P(bg,ny) = P(bb,ny) becomes 1

2 (from 0 before the access).
Similarly, by could contain after the access, either ng or nb each with probability 1

2 . Such changes
in the probability are illustrated in Figure 3.6(f), which assumes, as an example, that the first ac-
cess is for block b1 at SY , bN+1 at SG, and b2N+1 at SB. Extending the reasoning to a sequence
of accesses, we can formalize the changes to the probability matrix due to the observation of the
access to blocks by, bg, and bb as follows (the values in the right side of the formulas are those
before the access):

• by := 1
2(bg +bb);

• bg := 1
2(by +bb);

• bb := 1
2(by +bg);

• bi := bi, with i 6= y, i 6= g, and i 6= b.

In Figure 3.8(a), entropy evolution in case of full collusion is represented by the dotted red line
(lighter in b/w printout). The increase of entropy (i.e., the knowledge degradation) is clearly lower
than in the case of no or partial (between two providers) collusion. However, the knowledge of
each provider is progressively destroyed thanks to the uncertainty (among the two other providers)
of the new allocation of the accessed node.

3.7.3 Knowledge Gain

We now evaluate, with a similar approach, a different initialization scenario, where the providers
have no knowledge on the node-block correspondence, and assume that a storage provider (or more
of them in case of collusion) knows the content of the node n∗ target of one every T accesses (e.g.,
the target of the 4th, 8th, 12th, . . . accesses is known to the provider). However, it does not know
the corresponding distributed covers, which are randomly chosen. To model the knowledge of the
providers on the content of the target node (one every T access requests), in the analysis of the no
collusion, collusion between two providers, and full collusion scenario, we select n∗ uniformly at
random among the leaves of the abstract index. The block storing n∗ is, in turn, chosen following
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the discrete probability mass function (pmf) specified by the column in the probability matrix
associated with the target node n∗. The two blocks representing the distributed covers of n∗ are
chosen among the blocks stored at the other two providers. In the following, we show for each
node n, the evolution of entropy Hn (i.e., knowledge gain) for each provider given the execution
of a random sequence of accesses.

No collusion. We first consider the natural configuration where providers do not collude. At
initialization time, SY has no knowledge on the node-block correspondence. Therefore, the initial
configuration of the probability matrix is uniform (see Figure 3.9(a)). Consider the first access
observed by SY to a known target node n∗, and let by be the block accessed at SY , and bi any
other block stored at SY . Since the target of the access is known to SY , it knows for sure that
n∗ is allocated (both before and after swapping) at one among the three accessed blocks with
equal probability. Hence, the probability P(by,n∗) will change to 1

3 (from 1
3N before the access),

while the probability that node n∗ is allocated at a block bi stored at SY different from by (and
then not accessed) changes to P(bi,n∗) = 0. The probability that n∗ is allocated at a block stored
at a provider different from SY instead remains unchanged P(bother,n∗) = 2

3 . The values of the
probabilities P(by,n j) that each non-target node n j 6= n∗ is allocated at by before the access are
uniformly redistributed over the whole set of 3N blocks, that is, 1

3N P(by,n j) is added to P(bi,n j),
with n j 6= n∗ and i 6= y. (In fact, it is more likely for blocks different from by to store nodes different
from n∗.) Similar changes apply to the probability values for blocks that are stored at SG and SB.
Hence, 2N · 1

3N P(by,n j) =
2
3 P(by,n j) is added to P(bother,n j). Analogously, P(by,n j) is reduced

to be 1
3N of its original value, that is 1

3N P(by,n j). Figure 3.9(b) illustrates the probability matrix
after the execution of an access with target n∗ that accesses block b1. Extending the reasoning to a
sequence of accesses, we can formalize the changes to the probability matrix due to the observation
of an access with known target n∗ as follows (the values in the right side of the formulas are those
before the access):

• by := 1
3N by and by[n∗] := 1

3 ;

• bother := bother +
2
3 by and bother[n∗] := 2

3 ;

• bi := bi +
1

3N by and bi[n∗] := 0,
with i 6= y and i 6= other.

Note that for accesses whose target is not known to SY , the formulas illustrated in the case of no
collusion among the providers in Section 3.7.2 apply.

To evaluate entropy evolution, similarly to what has been done in the previous scenario, we
performed a series of simulations considering an index with |N | = 1200 leaf nodes, and varying
the frequency of known accesses to be one every T ∈ {16,8,4,2,1} requests. At initialization
time, the probability matrix is uniform and then the initial value of the average entropy is the
maximum theoretical one (i.e., log2 1200). Figure 3.10(a) shows that the system reaches an equi-
librium between the information gain acquired by observing known accesses and the destruction
of information caused by swapping. Note that entropy is higher when the frequency of accesses
with known target is lower. However, the minimum entropy value reached at equilibrium is high
even when the provider is supposed to know all the accesses (T = 1 in Figure 3.10(a)). This con-
firms the effectiveness of the design of our distributed index structure, showing how it is able to
guarantee access and pattern confidentiality.

Collusion between two providers. We now evaluate the entropy evolution when two providers
(SY and SG for concreteness) collude. Consider the initial uniform configuration (see Figure 3.9(c))
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Figure 3.9: Probability matrices at initialization (a,c,e) and after the first known access (b,d,f) to blocks b1,
bN+1, b2N+1 with: no collusion (a,b), collusion among two providers (c,d), and full collusion (e,f)

and assume that the first access has n∗ as target and accesses blocks by at SY and bg at SG. The
probability matrix evolves similarly to the case in which the providers do not collude. Because of
swapping, the target n∗ of the access can be allocated to any of the accessed blocks (i.e., by, bg, or
a block at SB) with the same probability. Hence, P(by,n∗) = P(bg,n∗) = P(bother,n∗) = 1

3 , while
P(bi,n∗) = 0 with bi a block stored at SY or SG different from by and bg. The values of probabilities
P(by,n j) and P(bg,n j), with n j 6= n∗, before the access are uniformly redistributed over the whole
set of 3N blocks, including by, bg, and the blocks at SB. Assuming, as an example, that the first
access is known to be for n∗ and it accesses block b1 at SY and block bN+1 at SG, Figure 3.9(d)
illustrates the probability matrix after the access execution. Extending the reasoning to a sequence
of accesses, we can formalize the changes to the probability matrix due to the observation of an
access with known target n∗ as follows (the values in the right side of the formulas are those before
the access):

• by := 1
3N (by +bg) and by[n∗] := 1

3 ;

• bg := 1
3N (by +bg) and bg[n∗] := 1

3 ;

• bother := bother +
1
3(by +bg) and bother[n∗] := 1

3 ;
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Figure 3.10: Evolution of the entropy for a distributed index with 1200 leaf nodes distributed among
three storage providers starting from a no-knowledge scenario in a no collusion (a), collusion between two
providers (b), and full collusion (c) scenario

• bi := bi +
1

3N (by +bg) and bi[n∗] := 0,
with i 6= y, i 6= g, and i 6= other.

Again, for accesses whose target is not known to SY , the formulas illustrated in the case of collu-
sion between two providers in Section 3.7.2 apply.

Figure 3.10(b) shows the protection (i.e., the average entropy value) offered by an index with
|N |= 1200 leaf nodes distributed among three storage providers that know the content of the node
retrieved by the client one every T ∈{16,8,4,2,1} access requests. As expected, the equilibrium is
reached at a lower entropy value compared with the case in which there is no collusion. However,
the degree of protection exhibited by our solution still guarantees pattern confidentiality.

Full collusion. We now evaluate the knowledge gain (i.e., how entropy decreases) in presence of
collusion among all the three providers. Consider an initial configuration of absence of knowledge
in the node-block allocation (Figure 3.9(e)). Assume now that the first observation is for an access
with n∗ as target and over by at SY , bg at SG, and bb at SB. By colluding, the providers can share
information on the leaf block accessed at each provider, therefore they know for sure that n∗ is
allocated at one among by, bg, and bb with equal probability. Hence, P(by,n∗) = P(bg,n∗) =
P(bb,n∗) = 1

3 , while P(bi,n∗) = 0 for each bi with i 6= y, i 6= g, and i 6= b. Again, the values
of probabilities P(by,n j), P(bg,n j), and P(bb,n j), with n j 6= n∗, before the access are uniformly
redistributed over the whole set of 3N blocks, including the accessed blocks. These changes in the
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Shuffling Swapping

Two providers 2.5 8.8

Three providers 5.8 9.2

Table 3.1: Comparison among the rates of entropy increase (bits/104 accesses) for shuffling and swapping
with two and three providers, assuming no collusion.

probability matrix are illustrated in Figure 3.9(f), which assumes, as an example, that the known
target of the first access is n∗ and that blocks b1 at SY , bN+1 at SG, and b2N+1 at SB are accessed.

For each access request, we can formalize the changes to the probability matrix due to the
observation of the access to blocks by, bg, and bb like for the case of full collusion described
in Section 3.7.2, except for the T -th access whose target is known, for which the update of the
probability matrix is as follows (the values in the right side of the formulas are those before the
access):

• by := 1
3N (by +bg +bb) and by[n∗] := 1

3 ;

• bg := 1
3N (by +bg +bb) and bg[n∗] := 1

3 ;

• bb := 1
3N (by +bg +bb) and bb[n∗] := 1

3 ;

• bi := bi +
1

3N (by +bg +bb) and bi[n∗] := 0,
with i 6= y, i 6= g, and i 6= b.

Figure 3.10(c) shows the protection (i.e., the average entropy value) offered by an index with
|N |= 1200 leaf nodes distributed among three storage providers that know the content of the node
retrieved by the client one every T ∈{16,8,4,2,1} access requests. As expected, the equilibrium is
reached at a lower entropy value compared with the cases of no or partial (between two providers)
collusion. However, it still presents a significant level of obfuscation of the correlation between
nodes and blocks, demonstrating the effectiveness of the swapping technique.

3.8 Discussion

The main characteristics of our approach are the use of swapping (in contrast to shuffling) and the
use of three providers for managing the data structure. In this section we provide the motivation
behind these choices. We close the section with a comment on the performance and cost of our
approach.

Why swapping. Swapping forces an accessed node to be reallocated to a block at a different
provider from the one where the node was stored before the access. By contrast, with random
shuffling, the node can remain with the provider (i.e., under its control) with probability 1

S , where S
is the number of providers (three in our approach). Considering the worst case scenario illustrated
in Section 3.7.2, in absence of collusion (as the system is expected to work) swapping provides
a much higher increase of entropy (i.e., a much higher degradation of the knowledge) at each
provider. Table 3.1 reports the rate of entropy increase after the first access starting from the full
knowledge initial configuration, comparing shuffling and swapping techniques combined with the
use of two and three providers (we will discuss on the number of providers next), and assuming
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no collusion. As it is clear from the table, swapping outperforms shuffling, with entropy increase
being three times as much in the case of two providers and twice as much in the case of three
providers. The analysis in Section 3.7.3 further confirms this observation. In fact, even if entropy
initially decreases, it never goes below a minimum threshold (i.e., maximum knowledge), which
is higher if the providers do not collude.

Why three providers. Collusion, while unlikely, cannot be completely ruled out (or in any case
some protection must be provided against it). When only two providers are used, the requirement
of swapping to move the accessed node out of its original block implies a deterministic reallocation
of the node (to the other provider). In case of collusion between the two providers this discloses the
block to which the node is re-allocated. Assuming the worst initial configuration in Section 3.7.2,
the determinism of the swapping operation would provide then no increase in entropy in presence
of collusion. Figure 3.8(b) illustrates the entropy evolution for an index with 1200 leaf nodes with
the use of two providers. As the figure shows while two providers provide an increase in entropy
(as also reported in Table 3.1) in case of no collusion (solid black line), the entropy would show
no increase in the case of collusion (dotted red line). By contrast, as already discussed in the
Section 3.7.2 and visible in Figure 3.8(a), the use of three providers shows an increase of entropy
(and hence protection due to the degradation of the knowledge of the providers) even when all
providers collude. This is also testified by the lower decrease of the entropy obtained when the
providers do not have any initial knowledge, but they know the target of each access. In fact, as
visible in Figure 3.10, the minimum entropy reached when the providers do not collude is 7.3%
higher than the case of two colluding providers, and 18.7% higher than the case of all the providers
colluding.

Economic considerations. One may wonder how the involvement of three providers (in contrast
to one or two) impacts the overall costs of the system. In this section, we provide some economic
considerations on the approach. The price lists of most Cloud providers present three cost com-
ponents (we take the March 2015 prices of Amazon S3 as a reference; similar pricing schemes
are used by the other providers): 1) monthly amount of stored data (US$ 30 per month per TB);
2) number of access requests (US$ 5 per million PUT requests, and US$ 0.4 per million GET
requests); and 3) amount of data transferred out of the provider (roughly US$ 80 per TB; data sent
to the provider is free of charge). The second parameter dominates the third one when requests
transfer on average less than 50KB, which is the case for our index (the node size we typically
used in simulations is a few KB). A simple analysis shows that, for an index distributed at three
providers, the storage and access costs are comparable when the system has to manage around
10K index access requests per day over a 1TB data collection. More precisely, when the access
frequency is lower, the storage costs dominate; when the access frequency is higher, it is the cost
of upload (PUT) requests that dominates.1 However, for systems with a low ratio between access
frequency and storage size the costs for a solution involving three providers is comparable with
those incurred for a solution with a single provider. This is due to the fact that the overall memory
needed for our distributed index structure is independent of the number of providers on which the
index is stored, and the access cost will linearly increase with the number of providers used.

1PUT requests are 12.5 times more expensive than GET requests; in our distributed index PUT and GET requests
occur with similar frequency, then the cost of PUT requests dominates that of GET requests.
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3.9 Summary

Building on the shuffle index approach studied in Work Package 2, we have proposed to distribute
data storage among multiple Cloud providers to the aim of providing better guarantees of access
and pattern confidentiality. The proposal developed within ESCUDO-CLOUD is based on the dis-
tribution of the shuffle index among three independent servers and has the advantage of proving
protection guarantees also in case of collusion. Within ESCUDO-CLOUD we formally analyzed
the protection offered by our approach to measure its quality, considering two representative sce-
narios. We considered first a worst-case scenario where providers start with a complete knowledge
of the data they store, showing how swapping quickly brings to a degradation of such a knowl-
edge. We also analyzed a scenario where the providers do not have initial knowledge, but know
the individual accesses, and show how our approach prevents knowledge accumulation. Our anal-
ysis confirms that distributed allocation and swapping provide nice protection guarantees, even in
presence of collusion.
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4. Data Protection as a Service for Federated
Cloud Storage

In this chapter we showcase the set of security tools, techniques and components that have been
used to design and develop the prototype software solution for Use Case 3 (Data Protection as a
Service use case) for the ESCUDO-CLOUD project. This solution will allow BT customers to
protect and control their confidential and sensitive information with a user-friendly data protection
service that will keep data private and help meet regulatory compliance requirements. Customers
will be able to store their data on multiple Cloud vendors and platforms, and will be able to
manage the security related aspects of their stored data via the federated protection service. Only
the customer (or a trusted third party designated by the customers) will have the access and control
of the decryption keys, giving the freedom to decrypt data on-demand and in real time.

The main problem being addressed in this use case is the security and management of data that
is hosted on third party infrastructures, for example in the form of block/file-system storage, data
backups, or databases. This problem is further complicated in the Cloud computing environment
as data can be replicated and moved automatically to cater for the scalability and reliability needs
of the Cloud providers’ customers, thus increasing the risk of a security compromise. In addition
to the data security concerns, most customers also have to abide by their company’s data protection
policies and governmental regulatory compliance (e.g., FIPS, HIPAA, HITECH, Sarbanes-Oxley,
GLB, and PCI DSS etc.).

Furthermore, a customer can make use of many other Cloud service providers offering storage
services, in addition to BT Cloud Compute, with each Cloud provider offering its own Application
Programming Interface (API), specialized services, and security functionalities to satisfy various
user requirements. Therefore, the tools and techniques used or implemented for Use Case 3 will
be able to construct a Cloud security service that provides data protection service to a customer
for block and object storage services, and works seamlessly across multiple Cloud platforms.

The rest of this chapter is structured as follows:
Section 4.1 provides the details of the solution’s contribution towards Use Case 3 objectives

and how those objectives will be realized.
Section 4.2 presents the state of the art for data encryption services offered in the commercial

Cloud platforms.
Section 4.3 highlights the innovative features contributed by the BT DPaaS solution in ESCUDO-

CLOUD.
Section 4.4 provides an overview of the reference tools and techniques identified and con-

structed for Use Case 3. A description of each component is provided, as well as their salient
functions and features, their purpose and motivation in the architecture of the solution, and their
role within the scope of Use Case 3.

Section 4.5 describes the design of the current high level architecture, the granularity of the
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main components, and the approach towards final solution design. It also provides the implemen-
tation details about the prototype developed to show the feasibility of the proposed solution.

Section 4.6 draws a few concluding remarks about this chapter and also provides a mapping
of the tools & components to the exact functional requirements of Use Case 3. It also details the
deliverable plan of the future work up to the end of the project.

4.1 Background

In this section, we try to showcase the relevance of the work done in the design and development
of the DPaaS solution towards the ESCUDO-CLOUD Use Case 3. This is done by demonstrating
the contribution of the security tools, techniques and components of the DPaaS solution towards
the objectives of Use Case 3.

Objective 1: The first objective of the ESCUDO-CLOUD Use Case 3 is the application of
data protection in Multi-Cloud environments.

Realization: This objective is realized by designing a solution that offers DPaaS via a Cloud
service store that enables the customers to manage the security life-cycle of their data stored on
multiple Cloud platforms, called the BT Service Store. The design and features of this component
will be discussed in Sections 4.4 and 4.5. As such, the BT Service Store component is further
applicable for use by Managed Security Service Providers (MSSP) and for Cloud customers and
user organizations that want to control the protection of data-at-rest across multiple Cloud envi-
ronments.

Objective 2: The second of the ESCUDO-CLOUD Use Case 3 objectives is to only allow the
customers or trusted third parties of their choice to manage the encryption keys in accordance with
policy-based access control rules.

Realization: This objective is addressed by the BT DPaaS solution by applying uniform and
tightly-coupled data protection and data access policies for heterogeneous data stored in a mul-
tiplicity of Cloud providers (both private and public Cloud platforms). The data is protected by
leveraging a Cloud-based data protection service for encrypting data independently and transpar-
ently of the Cloud provider hosting it, and ensuring that Cloud service providers have no access
to the encryption keys or its protection and access control policies. As shown in the upcoming
Sections 4.4 and 4.5, the Access Control Service and the Key Management Service components
of the DPaaS are constructed and offered as tightly integrated services that manage the protection
of the sensitive outsourced data. This tight integration ensures that the decryption of the protected
data is only possible in the client’s environment following a policy-based approval procedure and
the resulting release of the encryption key.

Objective 3: The third ESCUDO-CLOUD Use Case 3 objective is to allow the customers to
choose and use different Cloud storage services and provide an integrated view of these multiple
Cloud storage services to the customers.

Realization: This objective is realized by the DPaaS solution by utilizing a combination of
the BT Service Store component and customized data encryption agents. The BT Service Store is
used to offer customers centralized access and management interfaces to different Cloud storage
services like block storage, object stores and Big Data clusters that can be hosted on or provided
by different Cloud service providers. To cater for the diverse architectural and operational realities
of these disparate storage services, the data encryption agents are highly customized. In case of
block storage services they fulfill their roles as software agents installed inside individual virtual
machines, in case of object stores they fulfill their functions as part of a proxy gateway through
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which the data objects transit, and in case of Big Data storage clusters they will be designed
and implemented as HDFS plug-ins that can understand the Hadoop filesystem virtualisation and
encrypt and decrypt data on the HDFS Data Nodes accordingly.

Objective 4: The fourth and last ESCUDO-CLOUD Use Case 3 objective is to ensure that the
data is secured in accordance to specific data protection regulations and standards e.g., FIPS etc.

Realization: The data encryption agents, gateways and plug-ins of the DPaaS solution are
responsible for performing the core encryption and decryption operations on the customers data.
The encryption and decryption process is transparent to the applications and end-users while the
data-at-rest will always stay in encrypted state on the multiple Cloud platforms, in compliance
with specific data security standards and regulations. Furthermore, the specific encryption library
used by the BT Data Encryption Agents to perform these low-level tasks is FIPS-140-2 compliant.

4.2 State of the Art

Commercial Cloud computing providers such as Amazon and Google have started to provide
data encryption services for their data storage offerings [AMZ16, GOO16]. Their encryption
services, however, are rather simple and have a number of limitations such as vendor lock-in and
inflexibility in key management. In addition to these already deployed services, a number of
other services were introduced as a result of various research efforts. In particular, the authors of
[IKC09] introduced a Privacy-as-a-Service, which is implemented by tagging the data according
to three categories of privacy (essentially low, medium and high), and then applying pre-mapped
encryption algorithms on the data to ensure its security in the Cloud architecture. This service
allows for the secure storage and processing of users’ confidential data by leveraging the tamper-
proof capabilities of cryptographic coprocessors, which requires specialized hardware devices.

On the other hand, the authors of [KVA14] designed ESPRESSO, an Data Encryption as a Ser-
vice for Cloud Storage Systems. This service was designed for integration with two open-source
Cloud storage platforms: Swift in OpenStack [OPS16] and Cumulus in Nimbus [NIM16]. Au-
thors of [SG14] further discussed principles and architecture of a Secret Storage as a Service and
subsequently presented a design for such service. This service provides secure secret storage and
access control from the applications to securely storing, tracking, and controlling access to digital
secrets such as cryptographic keys and hashed passwords. Our proposed framework is different
from these services in the sense that we provide a full life-cycle of data security management i.e.,
creation, provisioning, operation and de-provisioning of the service for each customer. Our solu-
tion is also able to encrypt or decrypt existing data in-place, so the customers don’t have to move
data around just to have it secured. This contributes towards maximizing the flexibility of users
in using the data encryption service. Besides, our framework is extensible to work with different
Cloud platforms and security solutions.

The closest works to ours are [DDEM+14] and [PSDC15]. Specifically, with respect to the
work in [DDEM+14], our service is similar because both services target Multi-Cloud environ-
ments and provide several options for users to customize the services according to their needs.
The difference, however, is that the security service in that work focuses on protecting the VM
with firewalls and security tools while our focus is specifically on data encryption. On the other
hand, our work can be considered as an extension of the work presented in [PSDC15]. Both works
share the same idea of providing data encryption as a service. However, while [PSDC15] simply
presented primitive ideas and shown a high-level hard-coded architecture, our work introduced
matured ideas with a clear, low-level design architecture. Besides, the working principles between
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this work and ours are also very different, as they assumed a fully working federated infrastructure
already in place, having comprehensive monitoring capabilities of services running on it.

4.3 ESCUDO-CLOUD Innovation

The key innovative features of the Data Protection as a Service model as proposed in the context
of ESCUDO-CLOUD are:

• An independent service offered via the Cloud service store that enables customers to protect
data stored on multiple Cloud platforms

• The data is protected by encrypting it, and ensuring that Cloud service providers have no
access to the encryption keys or protection policies.

• The encrypted data can be stored on multiple Cloud storage services like virtual volumes,
object stores and Big Data clusters etc.

• Access control and key management are offered as independent but tightly coupled services
that manage the protection of the data via an integrated policy framework.

4.4 Tools and Techniques

In this section, we provide an overview of the main security tools and techniques that we have
identified and selected in order to develop and implement the Data Protection as a Service (DPaaS).
As it is obvious from the title of this document, this is not an exhaustive and permanent list, but
we are quite confident that the tools and technologies mentioned in this section will be sufficient
to address the bulk of the requirements identified in Use Case 3 of the ESCUDO-CLOUD in a
Multi-Cloud environment to enterprise customers.

The main software components of the ESCUDO-CLOUD data protection service are the
agents, tools and utilities providing the core data encryption/decryption mechanisms, the access
control service and the key management service. The customers will be able to utilize these ser-
vices via a service store that integrates the protection system and its components with multiple
independent Cloud service providers. Therefore, the service store’s orchestration capabilities is
the central component of the data protection service.

4.4.1 Service Orchestrator

Purpose

The main purpose of the BT Cloud service store’s Service Orchestrator is to provision the data
protection service to the customers and manage its life-cycle. Each customer gets a compartmen-
talized access to the data protection service, as discussed above, and is able to define the access
control and key release policies via the service store or the key management service interface and
associate keys with those policies. The service store also has the ability to install and config-
ure the encryption agent software on virtual machines and gateways on different supported Cloud
platforms.
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Functions and Features

The main functions and features offered by the BT Service Orchestrator are the following:

• Abstraction of Cloud and infrastructure level details.

• A scalable repository to store all service related information, including all components,
property settings.

• Management of relationships between multiple service components and all of their settings
and configuration data.

• Completely automated Multi-Cloud deployment.

• A user friendly centralized management portal to simplify the process provisioning service
components into multiple Cloud targets, and managing the service life-cycle seamlessly.

Application in Use Case 3

One of the core requirements of Use Case 3 of ESCUDO-CLOUD is the ability to support the data
security capabilities across multiple Cloud environments. This is where the Service Orchestrator
comes into use as it is designed in a manner so that the Cloud infrastructure and operating system
level dependencies are decoupled. This enables it to achieve the goal of provisioning the data pro-
tection service into a wide variety of Cloud targets, both public and private. Currently it supports
deployments and life-cycle management of data protection service on Amazon Web Services EC2,
Rackspace Cloud and Microsoft Azure in the public Cloud category, and Citrix CloudStack, CA
Applogic and VMware vCloud in the private Cloud category.

4.4.2 Key Management Service

Purpose

The main purpose of the BT Key Management Service is to allow the customers to generate, store
and manage their encryption keys and certificates securely. It is a centralized, high availability and
standards-based key management solution. It offers an intuitive web-based management console
for enterprise-wide administration and audit of encryption keys. It is provisioned and managed
via the BT Cloud service store’s Service Orchestrator, which enables each customer to create
isolated and compartmentalized key management domains, so that they can store and manage
their keys used in multiple Cloud platforms in a secure multi-tenant environment. Lastly, it is
tightly integrated with the BT Access Control Service that governs the rules and policies of key
release to the authorized users and processes.

Functions and Features

The main functions and features offered by the BT Key Management Service are following:

• Simplified multi-tenant and centralized key management.

• Generation and management of symmetric and asymmetric encryption keys (3DES, AES,
RSA).
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• Support of multiple X.509 digital certificate formats like PKCS#7, PKCS#8, DER, PEM,
and PKCS#12.

• Supports multiple API standards like PKCS#11, Microsoft Extensible Key Management
(EKM) and OASIS KMIP, which helps with automated and authorized key release.

• A user friendly centralized management portal to simplify the management of the keys’ and
certificates’ life-cycle seamlessly.

Application in Use Case 3

One of the core requirements of Use Case 3, as well as the main objective of the ESCUDO-
CLOUD, is to enable for the end-users the maximum control and ownership of their data in the
Cloud eco-system. This is realized in Use Case 3 by the customer-based management of the
encryption keys, so that only they are able to access the key store and only they are able to authorize
the release of keys to trusted encryption agents. The BT service store and the key management
service have no view or control of the customers’ keys and other security credentials, even if the
key management service is deployed on BT Cloud platform.

4.4.3 Access Control Service

Purpose

The main purpose of the BT Access Control Service is to allow the customers the ability to regu-
late the access to their encrypted data stored on multiple Cloud platforms through a policy based
enforcement of rich access control attributes. Thus its core value is to give the customers the assur-
ance that their data remains protected from the untrusted or curious Cloud service providers. It is a
centralized and high availability access control solution that offers an intuitive web-based manage-
ment console for enterprise-wide policy declaration and management. It is tightly integrated with
the BT Key Management Service, so that the customers can define access control and key release
policies via the BT service store or the KMS interface and bind keys with those policies. This
consolidation of key management and access control enables consistent policy implementation
between customers and multiple Cloud service providers.

Functions and Features

The main functions and features offered by the BT Access Control Service are the following:

• Availability of comprehensive access controls, especially for block storage and file-system
based Cloud storage services.

• Ability to enforce least-privileged user, hierarchical access management policies.

• Granular privileged user access management policies, that can be applied by user, process,
file type, time of day, and other parameters.

• A user friendly centralized management portal to simplify the management of the life-cycle
of access control policies.
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Application in Use Case 3

As mentioned previously, one of the core requirements of Use Case 3 and a main objective of the
ESCUDO-CLOUD, is to enable for the end-users the maximum control and ownership of their
data in the Cloud eco-system. This is realized in Use Case 3 by the Access Control Service, by
enabling the creation of a strong separation of duties between privileged Cloud service administra-
tors and data owners outsourcing their data on these Cloud platforms. The data encryption agents
encrypt files and objects etc. on the Cloud storage services, but leave their metadata in clear. In
this way, IT administrators, including hypervisor, Cloud, storage, and server administrators, can
perform their system administration tasks, without being able to gain privileged access to the sen-
sitive data residing on the systems they manage. In case the data owners and authorized customers
want to access their data, the access control service lets them achieve this seamlessly by releasing
the correct keys to the trusted encryption agents or gateways.

4.4.4 Data Encryption Agents

Purpose

The main purpose of the BT Data Encryption Agents is to offer capabilities for data-at-rest en-
cryption of sensitive data stored on different types of Cloud storage services, as well as enforce
privileged user access control on that data. It is a portable solution that can encrypt and protect
data residing in physical, virtualised, object, and big data storage environments. It implements a
transparent encryption approach at the file system level or volume level, so that there is no modi-
fication needed in the applications, infrastructures, or business practices that require access to the
data.

Functions and Features

The main functions and features offered by the BT Data Encryption Agents are the following:

• Broad platform portability, supporting Windows, Linux, and UNIX operating systems.

• Transparency to all applications.

• High performance encryption, as well as support for hardware-based encryption acceleration
products, such as Intel/AMD AES-NI and IBM P8 cryptographic coprocessor.

• Logging of all permitted, denied, and restricted access attempts from users, applications,
and processes.

Application in Use Case 3

One of the core requirements of Use Case 3 is that the customers should be able to cache their
keys on trusted virtual machines or gateways in order to outsource or improve performance of the
encryption and decryption process. The BT Data Encryption Agents are the components that are
considered trustworthy in the scope of Use Case 3 as they are provisioned and deployed by the BT
Service Orchestrator in a secure process on Cloud hosted virtual machines. The agents themselves
run and operate in a sand-boxed environment within the virtual machine that cannot be accessed or
modified by the Cloud or even the virtual machine’s administrators. The keys are obtained by the
agents after proper authentication and authorization procedures and are only cached securely for
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the duration of the encryption or decryption process and are not present on the virtual machines or
the gateways while the data is at rest.

4.5 Detailed Architecture

4.5.1 Current High-level DPaaS Design

The current architecture of the DPaaS solution is designed around the core functional requirements
of a multi-tenant customer scenario requiring to protect different types of data assets on multiple
Cloud storage services. The main component that addresses the administration and management
of multiple tenants/customers, multiple Cloud platforms and multiple Cloud storage services is the
Service Orchestrator component described in the previous section. As shown in Figure 4.1, this
the central component of the BT Cloud service store that is used to provision the overall DPaaS
capability to the BT customers. Each customer gets a compartmentalized access to the service
store and the data protection service, as discussed above, and is able to define the access control
and key release policies via the service store or the KMS interface. The BT Service Store also
has the ability to install and configure the encryption agents, plug-ins and gateways on virtual
machines on different supported Cloud platforms.

Figure 4.1: High-level View of the DPaaS Solution Design

The main benefit of this design is that a centrally managed data protection service is used to
manage the functional differences of different Cloud storage services on multiple Cloud platforms.
In Use Case 3, as depicted in Figure 4.1, we focus on three different storage mediums that are
commonly used by BT to store and process data on current Cloud platforms. We manage this
diversity of storage technologies as three different branches or three sub-Use Cases. The core
technical use case is to offer data protection as a service in a Multi-Cloud environment to the
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BT customers, whereas the service store provides the interface for the customers of the DPaaS
to access and manage these storage services. As a result of this structure, the sub-use cases will
inherit a common encryption, key management and access control system but will have different
abstraction layers to cater for the underlying storage mediums. The detailed architecture for two
of these services has been more or less finalized and is discussed in the following sections; the
Big Data storage encryption work is currently in initial phase and will be discussed briefly in the
future work section 4.6.1.

4.5.2 Block Storage Encryption Design

BT Cloud Compute offers the block storage services of multiple Cloud vendors to its customers.
The block storage services offer the creation and management of virtualized raw block devices of
a user-specified size. These block devices are typically used as data volumes by attaching them
to customers’ virtual machines using the appropriate Cloud service’s management API. Currently
BT Cloud Compute offers file and volume encryption services on top of Amazon AWS and Citrix
CloudStack block storage services.

Amazon Elastic Block Store

Amazon Elastic Block Store (EBS) provides raw block-level storage that can be attached to Ama-
zon EC2 instances. These block devices can then be used like any raw block device. In a typical
use case, this would include formatting the device with a filesystem and mounting the said filesys-
tem on a virtual machine. The data in the EBS volume or filesystem persists independently from
the running life of a virtual machine instance. Multiple data volumes or filesystems can be attached
to a virtual machine instance. It is also possible to detach an EBS volume from one virtual ma-
chine and attach it to another virtual machine. Amazon EBS also allows to create encrypted EBS
volumes, however existing EBS volumes or filesystems cannot be encrypted and the encryption
keys are stored and managed by Amazon services.

Citrix CloudStack Primary Storage

Citrix CloudStack has a similar concept of block storage in the form of “Primary” storage. Primary
storage is associated with a CloudStack cluster, and it stores virtual disks for all the VMs running
on hosts in that cluster. On KVM and VMware, you can provision Primary storage on a per-
zone basis. You can add multiple Primary storage servers to a cluster or zone. At least one is
required. It is typically located close to the hosts for increased performance. CloudStack manages
the allocation of guest virtual disks to particular Primary storage devices.

Similar block storage services are offered by almost all IaaS Cloud vendors, hence in theory
our solution is applicable equally on almost all Cloud block storage service providers. We have
picked a public and a private Cloud platform as a sufficient use case to demonstrate the architecture
of this component of the DPaaS model.

Architecture of Block Storage Encryption Service

The architecture for the block storage encryption component of the DPaaS comprises of three main
modules, and is shown in Figure 4.2.

The first module is the BT Service Store that is used to provision and manage the life-cycle of
the component’s service to the customers or tenants. Each tenant gets a compartmentalized view
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Figure 4.2: Architecture of the Block Storage Encryption Service Component of the DPaaS Solution

of the service store and the data protection service, as discussed in the previous sections. The
BT Service Store also has the ability to install and configure the data encryption agents on virtual
machines on different supported Cloud platforms. These agents are stored in a software repository
on the BT Service Store.

The second module is the Data Protection Manager, which enables the customers to define the
access control and key release policies via the BT Service Store or its own Web/REST interface.
The Data Protection Manager also contains secure vaults where the customers can import, export
and manage their encryption keys and access control policies. The Data Protection Manager is
able to communicate with the data encryption agents running on the virtual machines on different
Cloud platforms over secure communication channels like SSL/TLS.

The third and last module is the data encryption agent that is provisioned on the target virtual
machine by the BT Service Store’s Service Orchestrator (SO). After successful provisioning, the
agents on the virtual machines use PKI-based authentication to identify themselves to the Key
Management Service that is being managed by the Data Protection Manager module. If the agent
successfully passes the authentication phase, the Key Management Service issues the keys neces-
sary to encrypt the files and data volumes present on the block storage attached with the virtual
machine. After the completion of the encryption process, the access to the protected files and
volumes is enforced by the agent as well. Upon a data access request, the agent checks the Access
Control Service for the policy associated with the protected file or volume. It submits an encryp-
tion key release request to the Key Management Service if the access request is approved by the
Access Control Service. Once the Key Management Service issues the encryption key, the agent
can use the key to decrypt the data requested.

4.5.3 Object Storage Encryption Design

BT Cloud Compute offers the object storage services of multiple Cloud vendors to its customers.
Object storage refers to an approach of addressing and manipulating discrete units of storage
called objects. It offers storage services on a higher level of abstraction than that present on the
standard block storage devices like hard disks. Instead of offering the abstraction of a logical array
of unrelated blocks in which data can be written or read using an index in the array, as in block
storage devices, it offers the abstraction of a flat address space called a storage pool. All objects
exist in the same level and there is no concept of hierarchy i.e. one object cannot be placed inside
another object. An object itself can be viewed as a container that contains metadata associated
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with some data. Each object is assigned a globally unique identifier (GUID) which is used by
the users to retrieve the object without needing to know the physical location of the data. Object
storage is commonly used in Cloud computing environment in a Write-Once-Read-Many model
(WORM) for implementing data backup services.

Amazon Elastic Block Store

Amazon S3 (Simple Storage Service) is an object storage service offered by Amazon Web Services
(AWS). Objects are organized into buckets and are identified within each bucket by a unique,
user-assigned key. Buckets and objects can be created, listed, and retrieved using either a REST-
style HTTP interface or a SOAP interface. Requests are authorized using an access control list
associated with each bucket and object. S3 also supports encryption-at-rest of the user data once
it has been uploaded with server-side encryption (SSE), where the encryption keys are managed
or processed by Amazon.

Caringo Swarm

Caringo Swarm is a symmetric parallel object store that enables massively parallel processing
with built-in large bandwidth to overcome the performance limitations of traditional file systems.
In addition, a dynamically distributed index used to locate objects is located in RAM in order to
further improve performance. Furthermore, the data’s metadata (which includes all system, policy,
and custom metadata) is encapsulated with the data within the object. That means that the object is
portable and dynamic, even as it is decoupled from specific hardware, location, and applications.
It employs “erasure coding” which uses a variant of the Reed-Solomon error correction codes.
This ensures increased up-time, the risk of data loss is extremely low, and the storage redundancy
requirements are less than what RAID would require for the same level of reliability. However, it
does not have native encryption support, and does not support integration with encryption agents.

Architecture of Object Storage Encryption Service

The architecture for the object storage encryption component of the DPaaS comprises of one main
module, i.e., the BT Cloud Encryption Gateway, and is shown in Figure 4.3.

The gateway solution relies on the Data Protection Manager, described in the previous sec-
tion, for encryption key and policy management. As a result, customers never need to relinquish
control of cryptographic keys to the service provider and data never leaves the virtual machines
unencrypted or unaccounted.

The main role of the BT Cloud Encryption Gateway is to act as a proxy that can be used to
intercept objects being sent to the object storage services and transparently encrypt them during
transfer. The proxy can be deployed as a gateway in either the customers’ premises as a forward
proxy or in the Cloud environment as a reverse proxy. In addition to the proxy, it also implements a
basic key-value store to keep and track the state of the objects being encrypted in the gateway, con-
nectors for the supported Cloud object storage services (S3, Caringo etc.), and the data encryption
agent performing the core object encryption and decryption operations.

4.5.4 Block Storage Encryption Implementation

The detailed architecture of the block storage encryption service of DPaaS is shown in Figure 4.4.
In subsequent parts of this section, we respectively explain the reference design of the prototype
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Figure 4.3: Architecture of the Object Storage Encryption Service Component of the DPaaS Solution

service from two different points of view: component view and database view.

Component View

The block storage encryption service of DPaaS consists of three main components: Tenant Man-
agement, Cloud Platform Management and Security Solution Management.

Tenant Management (TM): This is the main component of the framework. The TM compo-
nent is in charge of managing customers registering to use the data protection service. In addition,
it maintains information of the user Cloud platform and security solutions that can be embedded
in the data protection service.

Figure 4.4: Implementation Reference of the Block Storage Encryption Service Prototype

Cloud Platform Management (CPM): To support a Multi-Cloud environment, this com-
ponent provides an interface consisting of APIs for communications with the supported Cloud
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platforms. For each Cloud platform the framework supports, a Cloud management plug-in is im-
plemented and attached to this component. Among APIs defined in the interface, some of them are
mandatory while others are optional for implementation. For example, it is required to implement
the APIs that connect to the Cloud platform for VM deployment and VM termination because
these operations are involved in the security agent installation and uninstallation actions.

Security Solution Management (SSM): Similar to the CPM component, to support different
security solutions, the SSM component defines an interface with APIs for communications with
the security solution servers and for each security solution the framework supports, a security
plug-in is needed. Basic APIs in this interface include access control policy definition and data
encryption/decryption requests.

As shown in Figure 4.4, while the TM component interacts with both the CPM and the SSM
components, the CPM and SSM components are independent of each other. Besides, even though
the TM component requires interaction with the CPM and SSM components, this interaction is
loosely coupled. Basically, based on the registered information of the users and depending on
the specific requests of users, the TM component will directly trigger the corresponding plug-
ins inside the CPM and SSM components. For example, if a user chooses to protect data in a
VM deployed in the Amazon EC2 platform and he chooses to employ a security solution from
Trend Micro™, the Amazon EC2 plug-in and Trend Micro™ plug-in will be called by the TM
component. Next time, if the user chooses to protect data in a VM deployed in the CloudStack
platform and he chooses to employ a security solution from SafeNet™, the CloudStack plug-in
and SafeNet™ plug-in will be called by the TM component. This design provides the scalability
for the framework to support several Cloud platforms and security solutions.

Database View

The framework is supported by four databases: the tenant database, the access control policies
database, key store/vault, and the agent repository. Among these four databases, only the first one,
which is the tenant database, is located inside the BT Service Store framework. The other two
databases are situated outside the Service Store framework and have separate interfaces for policy
management and key management. In this way, fine-grained access control policies can be defined
and users can customize the policies via the external interfaces without going through the Service
Store framework.

However, by having these two databases outside the Service Store framework, we need to also
define interfaces to connect them with the SSM component. At the moment, we employ a simple
REST interface to set-up default basic access control policies for users and leave users the freedom
to add-in or modify the policies later through the external interfaces.

4.5.5 Object Storage Encryption Implementation

The architecture of the object storage encryption service of DPaaS is shown in detail in Figure 4.5.
It reuses most of the components in the implementation described in the previous section. The only
main addition in this case is the BT Cloud Encryption Gateway. The Cloud Encryption Gateway
can be deployed in either the customers’ premises as a forward proxy or in the Cloud environment
as a reverse proxy, and implements the following main functions:
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Figure 4.5: Implementation Reference of the Object Storage Encryption Service Prototype

Forward Proxy

The main feature of the Cloud Encryption Gateway is to act as the proxy server for all the object
storage requests and responses coming to and from the S3 and Caringo object storage services.
This proxy server intercepts these objects being sent to the object storage services and transpar-
ently encrypts them during the caching phase. In addition to the basic proxy functionality, we also
implement a basic key-value store using MongoDB to keep track of the state of the objects being
encrypted in the gateway.

Object Storage Connectors

Similar to the Cloud Platform Management component (CPM) described in the block storage en-
cryption implementation, in the object storage encryption solution we made use of different object
storage connectors that provide the interfaces to interact with different Cloud object storage ser-
vices. So far we have made use of Amazon S3 and Caringo Swarm connectors, to which we
provide the appropriate customer’s object services’ credentials when the Cloud Encryption Gate-
way has been set-up and configured by the Service Store. The proxy server uses these connectors
to upload and download objects from the respective object store.

4.6 Summary

As the customers are provided with the choice of selecting storage services from multiple Cloud
service providers, by retaining control of key management the customers have more flexibility in
meeting regulatory and privacy requirements and ensuring data confidentiality and secure access.
Thus, by utilizing the BT Service Store and its features, the Data Protection as a Service is able to
support different security solutions in a Multi-Cloud environment. The BT Service Store provides
full automation of data encryption services to users as a complete life-cycle, from data encryption
to data decryption.

The contribution of the security tools, techniques and components of the DPaaS solution to-
wards the exact individual functional requirements of Use Case 3 [SDR15a, SDR15b] is given,
in a summarized fashion, in Table 4.1. A more detailed description of these associations will be
included in the next and final versions of this document (D4.3, D4.4).
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Requirement Reference DPaaS Component

REQ-UC3-KM-1 Data Protection Manager (Key Management Service)

REQ-UC3-KM-2 Data Protection Manager (Key Management Service)

REQ-UC3-KM-3 Data Protection Manager (Key Management Service)

REQ-UC3-KM-4 Data Protection Manager (Key Management Service)

REQ-UC3-KM-5 BT Service Store, Data Protection Manager (Key Management
Service)

REQ-UC3-KM-6 BT Service Store, Data Protection Manager (Key Management
Service), Data Encryption Agents

REQ-UC3-AC-1 Data Protection Manager (Access Control Service)

REQ-UC3-AC-2 Data Protection Manager (Access Control Service)

REQ-UC3-AC-3 Data Protection Manager (Access Control Service)

REQ-UC3-AC-4 Data Protection Manager (Access Control Service)

REQ-UC3-AC-5 BT Service Store, Data Protection Manager (Access Control Ser-
vice)

REQ-UC3-AC-6 Data Protection Manager (Access Control Service, Key Manage-
ment Service)

REQ-UC3-AC-7 Data Protection Manager (Access Control Service, Key Manage-
ment Service)

REQ-UC3-SO-1 BT Service Store

REQ-UC3-SO-2 BT Service Store

REQ-UC3-SO-3 BT Service Store

REQ-UC3-SO-4 BT Service Store

REQ-UC3-SO-5 BT Service Store

REQ-UC3-SO-6 BT Service Store

REQ-UC3-SO-7 BT Service Store

REQ-UC3-SO-8 BT Service Store

REQ-UC3-DE-1 BT Service Store, Data Protection Manager (Access Control Ser-
vice)

REQ-UC3-DE-2 BT Service Store, Data Encryption Agents

REQ-UC3-DE-3 Data Encryption Agents

REQ-UC3-DE-4 Data Encryption Agents, Data Protection Manager

REQ-UC3-DE-5 Data Encryption Agents, Data Protection Manager

Table 4.1: Mapping Between UC3 Functional Requirements and DPaaS Components
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4.6.1 Future Work

The main work to be done in this task in the next year will revolve around incorporating another
Multi-Cloud storage service in the DPaaS eco-system, i.e., Big Data storage. The specific Big Data
technology that has been identified and chosen to be included within the scope of DPaaS is the
Hadoop Distributed File System (HDFS). HDFS is a highly fault-tolerant distributed filesystem
with a master/slave architecture. Typically an HDFS cluster consists of a single NameNode, a
master server that manages the file system namespace and regulates access to files by clients,
and multiple DataNodes, that manage storage attached to the nodes that they run on. As HDFS
exposes a filesystem namespace and allows user data to be stored in files, it is quite similar in
logical structure to the Cloud block storage services. Therefore, we can probably re-use some of
the work done in the design and development of the block storage encryption component for Big
Data storage clusters.

Another area we are considering for future enhancement is the granularity of the access control
attributes. In addition to encryption and key management, the DPaaS solution can be extended to
enforce very granular, least-privileged user access management policies, enabling protection of
data from misuse by privileged users and APT attacks. For example, granular privileged user
access management policies can be applied by users, processes, file types, time of day, and other
parameters. These enforcement options are very granular and they can be used to control not only
permission to access clear-text data, but what also what file-system commands are available to the
customers.
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5. Conclusions

In Chapter 2, we have introduced a SLA-based methodology for the Multi-Cloud environment that
involves: i) MCSLA based services construction and management and ii) services selection. In the
former, we investigated the issues of MCSLA hierarchy and considered the dependencies between
different SLOs. Moreover, our approach automatically validates the MCSLA by exploring depen-
dencies between SLOs. In the latter, we developed a selection algorithm to score the CSP-offered
services based on the given SLAs and also the degree of customer satisfaction.

In Chapter 3, we have illustrated a technique for protecting confidentiality in Multi-Cloud sce-
narios. The proposed approach protects both the confidentiality of data stored at external Cloud
providers and the accesses to them. This approach is based on the use of a key-based dynam-
ically allocated data structure studied in Work Package 2, the shuffle index, that is distributed
over three independent Cloud providers. The security analysis confirms that distributed alloca-
tion and swapping provide nice protection guarantees, even in presence of collusion among Cloud
providers. We are currently working on the implementation of a distributed shuffle index proving
integration with different real-world Cloud providers, to evaluate the protection guarantees and the
performance overhead of our proposal.

In Chapter 4, we cover the design and development of the DPaaS solution that is being devel-
oped by BT as the main outcome of T4.3 of the ESCUDO-CLOUD project. We have listed and
described tools and techniques identified and selected for the DPaaS solution. The description has
been provided in form of the functions and features of the tools and techniques, their purpose and
place in the overall vision of the DPaaS solution and their specific application to the ESCUDO-
CLOUD Use Case 3. The current design describes the scope and granularity of some of the main
components of the solution, especially those related to offering data protection for Cloud block
and object storage services. This helps us in moving towards the final solution design for this
task. The main focus of the design of the DPaaS solution is the customer ownership and control
of the outsourced data’s protection. This is achieved due to the marriage of key management and
access control features, as only the customers exercise the control over the encryption keys. Only
they have the ability to regulate access to their data through policy based enforcement of access
control attributes. They will also have the assurance that their data will remain protected from the
untrusted Cloud service providers.
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